Strictly speaking, x^2 + 2x + 4 doesn't have solutions; if you want solutions, you must equate <span>x^2 + 2x + 4 to zero:
</span>x^2 + 2x + 4= 0. "Completing the square" seems to be the easiest way to go here:
rewrite x^2 + 2x + 4 as x^2 + 2x + 1^2 - 1^2 = -4, or
(x+1)^2 = -3
or x+1 =i*(plus or minus sqrt(3))
or x = -1 plus or minus i*sqrt(3)
This problem, like any other quadratic equation, has two roots. Note that the fourth possible answer constitutes one part of the two part solution found above.
X= r-h/y
h= xy-r/-1
r= xy+h
2193 x 10(little 37) over 79
or
≈2.77595 x 10(little 38)
Answer:
Step-by-step explanation:
We will use 2 coordinates from the table along with the standard form for an exponential function to write the equation that models that data. The standard form for an exponential function is
where x and y are coordinates from the table, a is the initial value, and b is the growth/decay rate. I will use the first 2 coordinates from the table: (0, 3) and (1, 1.5)
Solving first for a:
. Sine anything in the world raised to a power of 0 is 1, we can determine that
a = 3. Using that value along with the x and y from the second coordinate I chose, I can then solve for b:
. Since b to the first is just b:
1.5 = 3b so
b = .5
Filling in our model:

Since the value for b is greater than 0 but less than 1 (in other words a fraction smaller than 1), this table represents a decay function.
Step-by-step explanation:
here is your answer
enjoy
thanks to another users to give this answer