Answer:
53 lies between 7.2² and 7.3²
Step-by-step explanation:
Estimating a root to the nearest tenth can be done a number of ways. The method shown here is to identify the tenths whose squares bracket the value of interest.
You have answered the questions of parts 1 to 3.
__
<h3>4.</h3>
You are given that ...
7.2² = 51.84
7.3² = 53.29
This means 53 lies between 7.2² and 7.3², so √53 lies between 7.2 and 7.3.
53 is closer to 7.3², so √53 will be closer to 7.3 than to 7.2.
7.3 is a good estimate of √53 to the tenths place.
_____
<em>Additional comment</em>
For an integer n that is the sum of a perfect square (s²) and a remainder (r), the square root is between ...
s +r/(2s+1) < √n < s +r/(2s)
For n = 53 = 7² +4, this means ...
7 +4/15 < √53 < 7 +4/14
7.267 < √53 < 7.286
Either way, √53 ≈ 7.3.
__
The root is actually equal to the continued fraction ...

You just divide 15 by 3 and that equals 5
Answer:
a) Binomial distribution B(n=12,p=0.01)
b) P=0.007
c) P=0.999924
d) P=0.366
Step-by-step explanation:
a) The distribution of cracked eggs per dozen should be a binomial distribution B(12,0.01), as it can model 12 independent events.
b) To calculate the probability of having a carton of dozen eggs with more than one cracked egg, we will first calculate the probabilities of having zero or one cracked egg.

Then,

c) In this case, the distribution is B(1200,0.01)

d) In this case, the distribution is B(100,0.01)
We can calculate this probability as the probability of having 0 cracked eggs in a batch of 100 eggs.

The x becomes negative because the negative sign at the start of the parenthesis distributes to everything inside parenthesis so x becomes -x and the double negative becomes +6 so that is why
Pretty sure the distance is 8 units