Answer:
4 mo.
Step-by-step explanation:
I = PRT P = 600 R = .0375 I = 7.50
7.50 = 600(.0375)T
7.5 = 22.5T
T = 7.5/22.5 = 1/3 yr = 4 mo.
Answer:
General Formulas and Concepts:
<u>Pre-Calculus</u>
<u>Calculus</u>
Differentiation
- Derivatives
- Derivative Notation
Integration
- Integrals
- Definite/Indefinite Integrals
- Integration Constant C
Integration Rule [Reverse Power Rule]: 
Integration Rule [Fundamental Theorem of Calculus 1]: 
U-Substitution
- Trigonometric Substitution
Reduction Formula: 
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify</em>

<u>Step 2: Integrate Pt. 1</u>
<em>Identify variables for u-substitution (trigonometric substitution).</em>
- Set <em>u</em>:

- [<em>u</em>] Differentiate [Trigonometric Differentiation]:

- Rewrite <em>u</em>:

<u>Step 3: Integrate Pt. 2</u>
- [Integral] Trigonometric Substitution:
![\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \int\limits^a_b {cos(u)[1 - sin^2(u)]^\Big{\frac{3}{2}} \, du](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint%5Climits%5Ea_b%20%7B%281%20-%20x%5E2%29%5E%5CBig%7B%5Cfrac%7B3%7D%7B2%7D%7D%7D%20%5C%2C%20dx%20%3D%20%5Cint%5Climits%5Ea_b%20%7Bcos%28u%29%5B1%20-%20sin%5E2%28u%29%5D%5E%5CBig%7B%5Cfrac%7B3%7D%7B2%7D%7D%20%5C%2C%20du)
- [Integrand] Rewrite:
![\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \int\limits^a_b {cos(u)[cos^2(u)]^\Big{\frac{3}{2}} \, du](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint%5Climits%5Ea_b%20%7B%281%20-%20x%5E2%29%5E%5CBig%7B%5Cfrac%7B3%7D%7B2%7D%7D%7D%20%5C%2C%20dx%20%3D%20%5Cint%5Climits%5Ea_b%20%7Bcos%28u%29%5Bcos%5E2%28u%29%5D%5E%5CBig%7B%5Cfrac%7B3%7D%7B2%7D%7D%20%5C%2C%20du)
- [Integrand] Simplify:

- [Integral] Reduction Formula:

- [Integral] Simplify:

- [Integral] Reduction Formula:
![\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg|\limits^a_b + \frac{3}{4} \bigg[ \frac{2 - 1}{2}\int\limits^a_b {cos^{2 - 2}(u)} \, du + \frac{cos^{2 - 1}(u)sin(u)}{2} \bigg| \limits^a_b \bigg]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint%5Climits%5Ea_b%20%7B%281%20-%20x%5E2%29%5E%5CBig%7B%5Cfrac%7B3%7D%7B2%7D%7D%7D%20%5C%2C%20dx%20%3D%20%5Cfrac%7Bcos%5E3%28u%29sin%28u%29%7D%7B4%7D%20%5Cbigg%7C%5Climits%5Ea_b%20%2B%20%5Cfrac%7B3%7D%7B4%7D%20%5Cbigg%5B%20%5Cfrac%7B2%20-%201%7D%7B2%7D%5Cint%5Climits%5Ea_b%20%7Bcos%5E%7B2%20-%202%7D%28u%29%7D%20%5C%2C%20du%20%2B%20%5Cfrac%7Bcos%5E%7B2%20-%201%7D%28u%29sin%28u%29%7D%7B2%7D%20%5Cbigg%7C%20%5Climits%5Ea_b%20%5Cbigg%5D)
- [Integral] Simplify:
![\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg| \limits^a_b + \frac{3}{4} \bigg[ \frac{1}{2}\int\limits^a_b {} \, du + \frac{cos(u)sin(u)}{2} \bigg| \limits^a_b \bigg]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint%5Climits%5Ea_b%20%7B%281%20-%20x%5E2%29%5E%5CBig%7B%5Cfrac%7B3%7D%7B2%7D%7D%7D%20%5C%2C%20dx%20%3D%20%5Cfrac%7Bcos%5E3%28u%29sin%28u%29%7D%7B4%7D%20%5Cbigg%7C%20%5Climits%5Ea_b%20%2B%20%5Cfrac%7B3%7D%7B4%7D%20%5Cbigg%5B%20%5Cfrac%7B1%7D%7B2%7D%5Cint%5Climits%5Ea_b%20%7B%7D%20%5C%2C%20du%20%2B%20%5Cfrac%7Bcos%28u%29sin%28u%29%7D%7B2%7D%20%5Cbigg%7C%20%5Climits%5Ea_b%20%5Cbigg%5D)
- [Integral] Reverse Power Rule:
![\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg| \limits^a_b + \frac{3}{4} \bigg[ \frac{1}{2}(u) \bigg| \limits^a_b + \frac{cos(u)sin(u)}{2} \bigg| \limits^a_b \bigg]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint%5Climits%5Ea_b%20%7B%281%20-%20x%5E2%29%5E%5CBig%7B%5Cfrac%7B3%7D%7B2%7D%7D%7D%20%5C%2C%20dx%20%3D%20%5Cfrac%7Bcos%5E3%28u%29sin%28u%29%7D%7B4%7D%20%5Cbigg%7C%20%5Climits%5Ea_b%20%2B%20%5Cfrac%7B3%7D%7B4%7D%20%5Cbigg%5B%20%5Cfrac%7B1%7D%7B2%7D%28u%29%20%5Cbigg%7C%20%5Climits%5Ea_b%20%2B%20%5Cfrac%7Bcos%28u%29sin%28u%29%7D%7B2%7D%20%5Cbigg%7C%20%5Climits%5Ea_b%20%5Cbigg%5D)
- Simplify:

- Back-Substitute:

- Simplify:

- Rewrite:

- Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:

Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Integration
Book: College Calculus 10e
Answer:
You have to follow PEMDAS or parenthesis, exponents, multiplication, division, addition, and subtraction. It's an order to solve equations. I listed the steps and the answers for you below :) I have throughly checked them so they should be correct! yw :D
Step-by-step explanation:
1. 5x + 4x - 6x = 24
9x - 6x = 24
3x = 24
24/3 = 8
<u><em>x = 8</em></u>
2. 8y + 5 - 4y + 1 = 46
8y - 4y = 4y
5 + 1 = 6
4y + 6 = 46
4y = 46 - 6
4y = 40
40/4 = 10
<u><em>y = 10</em></u>
<u><em></em></u>
3. 33 = 5 ( x + 8 ) + 3
33 = 5x + 40 + 3 <em>(because we distributed)</em>
33 = 5x + 43
5x + 43 = 33<em> (just rewriting it to make it easier)</em>
5x = 33 - 43
5x = -10
-10/5 = -2
<em><u>so x = - 2</u></em>
4. 2m + 3 ( m - 8 ) = 1
2m + 3m - 24 = 1
<em>we got 3m - 24 because we distributed the 3</em>
5m - 24 = 1
5m = 25
25/5 = 5
<em><u>m = 5</u></em>
<em><u /></em>
5. p + p - 2p + 4p = - 48
2p - 2p + 4p = - 48
4p = - 48
- 48 / 4 = - 12
<u><em>p = - 12</em></u>
<u><em></em></u>
6. 2 ( y + 5 ) + 3y = 25
2y + 10 + 3y = 25
5y + 10 = 25
5y = 25 - 10
5y = 15
15/5 = 3
<u><em>y = 3</em></u>
7. 1/4 h + 3/4 h + 1/2 h + 2 = 5
1/4 h + 3/4 h + 1/2 = 3/2 h
3/2 h + 2 = 5
3/2 h = 5 - 2
3/2 h = 3
<u><em>h = 2</em></u>
<u><em></em></u>
8. 60 = 4 ( k + 3 ) + 2 ( k - 3 )
60 = 4k + 12 + 2k - 6
4k + 12 + 2k - 6 = 60
6k + 6 = 60
6k = 60 - 6
6k = 54
<u><em>k = 9 </em></u>
<u><em></em></u>
9. - 2 ( d + 1.4 ) - 1.8 = 20.6
-2d + - 2.8 - 1.8 = 20.6
-2d - 2.8 = 22.4
-2d = 25.2
<u><em>d = - 12.6 </em></u>
<u><em></em></u>
10. 8 - 2 ( w + 4 ) = 10
8 + - 2 w + - 8 = 10
-2w + 9 + - 8 = 10
-2w = 10
10 / -2 = -5
<u><em>w = -5</em></u>