1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Drupady [299]
2 years ago
10

Find the sum : 3/8 + 22.5

Mathematics
1 answer:
rewona [7]2 years ago
4 0

Answer:
183/8 or 22.875

Step-by-step explanation:

Take 22.5 and put it over 1 so 22.5/1

And then multiply by 8 to get a common denominator (180/8) then add the 3/8 and you get 183/8 or 22.875

You might be interested in
Michael got a loan for the Playstation 5. His loan was $600. At a 3.75% interest rate he had to pay $7.50 in interest. How long
Semmy [17]

Answer:

4 mo.

Step-by-step explanation:

I = PRT      P = 600    R = .0375    I = 7.50

7.50 = 600(.0375)T

7.5 = 22.5T

T = 7.5/22.5 = 1/3 yr = 4 mo.

6 0
3 years ago
Please help! Giveaway soon to celebrate expert level :D
elena-s [515]

Answer:

1 antonym

2 interrogative

3 verb

4 inflection

5 declarative

6 synonym

7 exclamatory

8 pronunciation

9 accent

10 imperative

4 0
3 years ago
Read 2 more answers
<img src="https://tex.z-dn.net/?f=%5Cint%5Climits%5Ea_b%20%7B%281-x%5E%7B2%7D%20%29%5E%7B3%2F2%7D%20%7D%20%5C%2C%20dx" id="TexFo
Ludmilka [50]

Answer:\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{3arcsin(a) + 2a(1 - a^2)^\Big{\frac{3}{2}} + 3a\sqrt{1 - a^2}}{8} - \frac{3arcsin(b) + 2b(1 - b^2)^\Big{\frac{3}{2}} + 3b\sqrt{1 - b^2}}{8}General Formulas and Concepts:

<u>Pre-Calculus</u>

  • Trigonometric Identities

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Integration

  • Integrals
  • Definite/Indefinite Integrals
  • Integration Constant C

Integration Rule [Reverse Power Rule]:                                                               \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Rule [Fundamental Theorem of Calculus 1]:                                    \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

U-Substitution

  • Trigonometric Substitution

Reduction Formula:                                                                                               \displaystyle \int {cos^n(x)} \, dx = \frac{n - 1}{n}\int {cos^{n - 2}(x)} \, dx + \frac{cos^{n - 1}(x)sin(x)}{n}

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx

<u>Step 2: Integrate Pt. 1</u>

<em>Identify variables for u-substitution (trigonometric substitution).</em>

  1. Set <em>u</em>:                                                                                                             \displaystyle x = sin(u)
  2. [<em>u</em>] Differentiate [Trigonometric Differentiation]:                                         \displaystyle dx = cos(u) \ du
  3. Rewrite <em>u</em>:                                                                                                       \displaystyle u = arcsin(x)

<u>Step 3: Integrate Pt. 2</u>

  1. [Integral] Trigonometric Substitution:                                                           \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \int\limits^a_b {cos(u)[1 - sin^2(u)]^\Big{\frac{3}{2}} \, du
  2. [Integrand] Rewrite:                                                                                       \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \int\limits^a_b {cos(u)[cos^2(u)]^\Big{\frac{3}{2}} \, du
  3. [Integrand] Simplify:                                                                                       \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \int\limits^a_b {cos^4(u)} \, du
  4. [Integral] Reduction Formula:                                                                       \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{4 - 1}{4}\int \limits^a_b {cos^{4 - 2}(x)} \, dx + \frac{cos^{4 - 1}(u)sin(u)}{4} \bigg| \limits^a_b
  5. [Integral] Simplify:                                                                                         \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg| \limits^a_b + \frac{3}{4}\int\limits^a_b {cos^2(u)} \, du
  6. [Integral] Reduction Formula:                                                                          \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg|\limits^a_b + \frac{3}{4} \bigg[ \frac{2 - 1}{2}\int\limits^a_b {cos^{2 - 2}(u)} \, du + \frac{cos^{2 - 1}(u)sin(u)}{2} \bigg| \limits^a_b \bigg]
  7. [Integral] Simplify:                                                                                         \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg| \limits^a_b + \frac{3}{4} \bigg[ \frac{1}{2}\int\limits^a_b {} \, du + \frac{cos(u)sin(u)}{2} \bigg| \limits^a_b \bigg]
  8. [Integral] Reverse Power Rule:                                                                     \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg| \limits^a_b + \frac{3}{4} \bigg[ \frac{1}{2}(u) \bigg| \limits^a_b + \frac{cos(u)sin(u)}{2} \bigg| \limits^a_b \bigg]
  9. Simplify:                                                                                                         \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg| \limits^a_b + \frac{3cos(u)sin(u)}{8} \bigg| \limits^a_b + \frac{3}{8}(u) \bigg| \limits^a_b
  10. Back-Substitute:                                                                                               \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(arcsin(x))sin(arcsin(x))}{4} \bigg| \limits^a_b + \frac{3cos(arcsin(x))sin(arcsin(x))}{8} \bigg| \limits^a_b + \frac{3}{8}(arcsin(x)) \bigg| \limits^a_b
  11. Simplify:                                                                                                         \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{3arcsin(x)}{8} \bigg| \limits^a_b + \frac{x(1 - x^2)^\Big{\frac{3}{2}}}{4} \bigg| \limits^a_b + \frac{3x\sqrt{1 - x^2}}{8} \bigg| \limits^a_b
  12. Rewrite:                                                                                                         \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{3arcsin(x) + 2x(1 - x^2)^\Big{\frac{3}{2}} + 3x\sqrt{1 - x^2}}{8} \bigg| \limits^a_b
  13. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:              \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{3arcsin(a) + 2a(1 - a^2)^\Big{\frac{3}{2}} + 3a\sqrt{1 - a^2}}{8} - \frac{3arcsin(b) + 2b(1 - b^2)^\Big{\frac{3}{2}} + 3b\sqrt{1 - b^2}}{8}

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

Book: College Calculus 10e

8 0
3 years ago
Read 2 more answers
What are the answers to the questions below?
Tcecarenko [31]

Answer:

You have to follow PEMDAS or parenthesis, exponents, multiplication, division, addition, and subtraction. It's an order to solve equations. I listed the steps and the answers for you below :) I have throughly checked them so they should be correct! yw :D

Step-by-step explanation:

1. 5x + 4x - 6x = 24

9x - 6x = 24

3x = 24

24/3 = 8

<u><em>x = 8</em></u>

2. 8y + 5 - 4y + 1 = 46

8y - 4y = 4y

5 + 1 = 6

4y + 6 = 46

4y = 46 - 6

4y = 40

40/4 = 10

<u><em>y = 10</em></u>

<u><em></em></u>

3. 33 = 5 ( x + 8 ) + 3

33 =  5x + 40 + 3 <em>(because we distributed)</em>

33 = 5x + 43

5x + 43 = 33<em> (just rewriting it to make it easier)</em>

5x = 33 - 43

5x = -10

-10/5 = -2

<em><u>so x = - 2</u></em>

4. 2m + 3 ( m - 8 ) = 1

2m + 3m - 24 = 1

<em>we got 3m - 24 because we distributed the 3</em>

5m - 24 = 1

5m = 25

25/5 = 5

<em><u>m = 5</u></em>

<em><u /></em>

5. p + p - 2p + 4p = - 48

2p - 2p + 4p = - 48

4p = - 48

- 48 / 4 = - 12

<u><em>p = - 12</em></u>

<u><em></em></u>

6. 2 ( y + 5 ) + 3y = 25

2y + 10 + 3y = 25

5y + 10 = 25

5y = 25 - 10

5y = 15

15/5 = 3

<u><em>y = 3</em></u>

7. 1/4 h + 3/4 h + 1/2 h + 2 = 5

1/4 h + 3/4 h + 1/2 = 3/2 h

3/2 h + 2 = 5

3/2 h = 5 - 2

3/2 h = 3

<u><em>h = 2</em></u>

<u><em></em></u>

8. 60 = 4 ( k + 3 ) + 2 ( k - 3 )

60 = 4k + 12 + 2k - 6

4k + 12 + 2k - 6 = 60

6k + 6 = 60

6k = 60 - 6

6k = 54

<u><em>k = 9 </em></u>

<u><em></em></u>

9. - 2 ( d + 1.4 ) - 1.8 = 20.6

-2d + - 2.8 - 1.8 = 20.6

-2d - 2.8 = 22.4

-2d = 25.2

<u><em>d = - 12.6 </em></u>

<u><em></em></u>

10. 8 - 2 ( w + 4 ) = 10

8 + - 2 w + - 8 = 10

-2w + 9 + - 8 = 10

-2w = 10

10 / -2 = -5

<u><em>w = -5</em></u>

4 0
3 years ago
A rectangular prism is 8 feet long, 3 feet high, and 6 feet wide. A cubic foot of water is approximately 7.5 gallons. How many g
Yuliya22 [10]
810 gallons of water when it is 75% full.
8 0
3 years ago
Read 2 more answers
Other questions:
  • I got 2136cm2 but my answer key says different... please help and show all work
    15·2 answers
  • R divided by n plus t equals four v times n
    8·1 answer
  • Change 46/6 into a whole number
    6·1 answer
  • PLZ HELP!!! 30 POINTS!!<br><br> Write a proof for the following equation:<br><br> 3x+27=2y+32
    7·1 answer
  • During the month of April, Dora kept track of the bogs she saw in her garden. She saw a ladybug on 23 days of the month. What is
    10·1 answer
  • Sketch the polar curves r = 6 sin θ and r = 2+ 2 sin θ, then set up an integral that represents the area inside r = 6 sin θ and
    15·1 answer
  • 3/2 * (-5/8) what is the an
    14·1 answer
  • What is the constant of proportionality in the equation y = 2x?
    14·1 answer
  • RADICALS <br><br> simplify square root 40<br><br> NEED HELP ASAP!!!
    5·2 answers
  • Answet please and please show work
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!