SR because any point on a perpendicular bisecting line is equidistant from the ends of the bisected segment.
<h3>
ax² + bx + c = 0</h3>
<em>Let's write -9 where we see A</em><em>:</em>
<h3>
-9x² + bx + c = 0</h3>
<em>Let's</em><em> </em><em>write</em><em> </em><em>0</em><em> </em><em>where</em><em> </em><em>we</em><em> </em><em>see</em><em> </em><em>B</em><em>:</em>
<h3>
-9x² + 0.x + c = 0</h3>
<em>(</em><em>Since B = 0, when it is multiplied by x, it becomes 0 again</em><em>)</em>
<h3>
-9x² + c = 0</h3>
<em>Let's</em><em> </em><em>write</em><em> </em><em>-2</em><em> </em><em>where</em><em> </em><em>we</em><em> </em><em>see</em><em> </em><em>C</em><em>:</em>
<h3>
-9x² + -2 = 0</h3>
<em>Now we can move on to solving our equation</em><em>:</em><em>)</em>
<em>Let's put the known and the unknown on different sides:</em>
<em>(</em><em>-2 goes to the opposite side positively</em><em>)</em>
<h3>
-9x² = 2</h3>
<em>(</em><em>i</em><em>t goes as a division because it is in the case of multiplying -9 across</em><em>)</em>
<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em>
<h3>
x² = 2/-9</h3>
<em>I could not find the rest of it, but I did not want to delete it for trying very hard. Sorry. It felt like we should take the square root, but I couldn't find it, maybe this can help you a little bit.</em>
<em>Please do not report</em><em>:</em><em>(</em>
<em>I hope I got it right, I'm trying to improve my English a little :)</em>
<h3>
<em>Greetings from Turke</em><em>y</em><em>:</em><em>)</em></h3>
<h3>
<em><u>#XBadeX</u></em></h3>
The radian is with a denominator of 5 is 2.5
17 . Find the values of g(9) and h(-14) and add them together.
The function equations are given to find their values substitute 9 in g(x) and -14 in h(x)
20. They said f(x) = 2x + 9 and f(x) = 15 , which means they are equal to each other.
So write them as 2x + 9 = 15 , and solve the equation to find the value of x.
25. Here all you have to do is substitute 4 into the f(x) equation to find f(4)and you will have your answer.
Hope this helped!