Answer:
a reflection over the x-axis and then a 90 degree clockwise rotation about the origin
Step-by-step explanation:
Lets suppose triangle JKL has the vertices on the points as follows:
J: (-1,0)
K: (0,0)
L: (0,1)
This gives us a triangle in the second quadrant with the 90 degrees corner on the origin. It says that this is then transformed by performing a 90 degree clockwise rotation about the origin and then a reflection over the y-axis. If we rotate it 90 degrees clockwise we end up with:
J: (0,1) , K: (0,0), L: (1,0)
Then we reflect it across the y-axis and get:
J: (0,1), K:(0,0), L: (-1,0)
Now we go through each answer and look for the one that ends up in the second quadrant;
If we do a reflection over the y-axis and then a 90 degree clockwise rotation about the origin we end up in the fourth quadrant.
If we do a reflection over the x-axis and then a 90 degree counterclockwise rotation about the origin we also end up in the fourth quadrant.
If we do a reflection over the x-axis and then a reflection over the y-axis we also end up in the fourth quadrant.
The third answer is the only one that yields a transformation which leads back to the original position.
Litersx1000=mls
20x1000=20000mls
Answer:
Step-by-step explanation:
Total cost for trip = 290 + 50 + 95*5 =290+50+ 475 = $ 815
Savings = $143
Money needed = 815 - 143 = $ 672
No. of driveways = 672/48 = 14
14 driveways must she shovel to have enough money to pay for the trip.
Answer:
30
Step-by-step explanation:
Answer:
xy = 1
k = 79
Step-by-step explanation:
Question One
The first and third frames look to me to be the same. I'll treat them that way.
y = x^2 Equate y = x^2 to the result of 2y + 6 = 2x + 6
2y + 6 = 2(x + 3) Remove the brackets
2y + 6 = 2x + 6 Subtract 6 from both sides
2y = 2x Divide by 2
y = x
Now solve these two equations.
so x^2 = x
x > 0
1 solution is x = 0 from which y = 0. This won't work. x must be greater than 0. So the other is
x(x) = x Divide both sides by x
x = 1
y = x^2 Put x = 1 into x^2
y = 1^2 Solve
y = 1
The second solution is
(1,1)
xy = 1*1
xy = 1
Answer: A
Question Two
square root(k + 2) - x = 0
Subtract x from both sides
sqrt(k + 2) = x Square both sides
k + 2 = x^2 Let x = 9
k + 2 = 9^2 Square 9
k + 2 = 81
k = 81 - 2
k = 79