The equilibria showing how the acetate buffer adjusts to addition of a small amount of NaOH is:
- CH3COOH(aq) + H2O(1) → H30+ (aq) + CH3COO (aq)
<h3>What is a buffer?</h3>
A buffer is a solution which resists changes to its pH when small amounts of strong base or acid is added to it.
Buffers are made from solutions of weak acids and their salts or weak bases and their salts.
The equilibria showing how a buffer made from acetic acid and sodium acetate (NaCH3COO) adjusts to addition of a small amount of NaOH is as follows:
- CH3COOH(aq) + H2O(1) → H30+ (aq) + CH3COO (aq)
Addition of NaOH, a strong base will neutralize the hydronium ion, causing the acetic acid ionization equilibrium to shift to the right to produce more of the acetate ion, the conjugate base.
Learn more about acetate buffer at: brainly.com/question/17490438
The <u>Mole</u> is the SI unit that expresses the amount of substance.
Mole is defined as - The mole is the amount of substance containing the same number of entities as there are in the 12 grams of Carbon - 12.
Mole is denoted by using symbol mol.
Mole = 6.022 x 10²³ elementary entities.
These number of elementary entities in 1 mole is equal to or called as an Avogadro's number. Mole is equal to 6.022 x 10²³ because this number of entity is same as in exactly 12 g of carbon-12.
It is a very important SI unit of measured which is used by the chemists. Moles are used in measuring in small or tiny things such as atoms, molecules and the other tiny particles.
To learn more about the mole concept,
brainly.com/question/28498715
#SPJ4
Once heat from the sun penetrate the Earths atmosphere, the heat is circulated as warm air rises and cold air sinks,this process is called convection Convection can be demonstrated by placing a heat source {cooker} at the side of a glass full of a liquid, and observing the changes in temperature in the glass caused by the warmer fluid moving into cooler areas
1. A
2. B
3. A
4. A
5. A
6. C
7. A
8. A
9. ?
10. A
Answer:
0.54 mole of H2O.
Explanation:
We'll begin by writing the balanced equation for the reaction. This is illustrated below:
2CH3OH + 3O2 —> 2CO2 + 4H2O
From the balanced equation above,
2 moles of CH3OH reacted to produce 4 moles of water.
Finally, we shall determine the number of mole of water (H2O) produced by the reaction of 0.27 moles of CH3OH. This can be obtained as follow:
From the balanced equation above,
2 moles of CH3OH reacted to produce 4 moles of water.
Therefore, 0.27 moles of CH3OH will react to produce = (0.27 × 4)/2 = 0.54 mole of H2O.
Thus, 0.54 mole of H2O is produced from the reaction.