Answer:

Explanation:
The heaviside function is defined as:

so we see that the Heaviside function "switches on" when
, and remains switched on when 
If we want our heaviside function to switch on when
, we need the argument to the heaviside function to be 0 when 
Thus we define a function f:

The
term inside the heaviside function makes sure to displace the function 5 units to the right.
Now we just need to add a scale up factor of 240 V, because thats the voltage applied after the heaviside function switches on. (
when
, so it becomes just a 1, which we can safely ignore.)
Therefore our final result is:

I have made a sketch for you, and added it as attachment.
Answer:
the charge that is given by the object is positive charge and the object which is taking the charge is negetively charged
Explanation:
Answer:
F' = (3/2)F
Explanation:
the formula for the electric field strength is given as follows:
E = F/q
where,
E = Electric Field Strength
F = Force due to the electric field
q = magnitude of charge experiencing the force
Therefore,
F = E q ---------------- equation (1)
Now, if we half the electric field strength and make the magnitude of charge triple its initial value. Then the force will become:
F' = (E/2)(3 q)
F' = (3/2)(E q)
using equation (1)
<u>F' = (3/2)F</u>
Answer:
562.5J
Explanation:
The following were obtained from the question:
F = 45N
d = 12.5m
w =?
The work done can be achieved by using
w = F x d
w = 45 x 12.5
w = 562.5J
Answer:
=24.25 ^−1
Explanation:
Let and be initial and final velocity of the body respectively,
be acceleration due to gravity ( 9.8^−2 ), ℎ be the height of the body.
=0 ^ −1
ℎ=30
we know that, ^2−^ 2=2ℎ
^2=2∗9.8∗30
^2=588
=24.25 ^−1