1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
NemiM [27]
2 years ago
5

Solve the following: a) 4x 3= 2x + 7 b) 2x+6= 7x14

Mathematics
1 answer:
nikdorinn [45]2 years ago
7 0
<h2><u>Correct question</u> : 4x - 3 = 2x + 7 </h2>

<h2><u>Solution</u> : 4x - 3 = 2x + 7 </h2>

4x - 2x = 7 + 3 \\  \\ 2x = 10 \\  \\ x =  \frac{10}{2}  \\  \\ x = 5.

<h2>•••••••••••••••••••••••••••••••••••••••</h2>

<h2><u>Correct Question</u> : 2x + 6 = 7x - 14</h2>

<h2><u>Solution</u> : 2x + 6 = 7x - 14</h2>

2x - 7x =  - 14 - 6 \\  \\  - 5x =  - 20 \\  \\ x =  \frac{20}{5}  \\  \\ x = 4.

You might be interested in
Simplify the expression. -5a 3b 8a
slega [8]
Here is u answer -5a4b<span>8</span>
8 0
4 years ago
When the domain is -1, the range is ______. Show your work to find the range.
lys-0071 [83]

we can't find the range of a function only with its domain , we must have its graph or its equation to say anything about it , with your information we are only able to say , its range has just a member.

5 0
3 years ago
Find The sum of the first 10 terms 8,20,32,44
nikklg [1K]

Answer:

S₁₀=620

Step-by-step explanation:

This is an arithmetic sequence with a common difference of d=12

The formula for an arithmetic series is Sₙ=(n/2)(a₁+aₙ) where aₙ is the nth term and a₁ is the first term.

We know that a₁=8 and d=12 where the 10th term would be a₁₀=8+(10-1)12=116.

Therefore, the sum of the first 10 terms of the arithmetic series is S₁₀=(10/2)(8+116)=(5)(124)=620

4 0
3 years ago
No link need right answer 100 points
maks197457 [2]

Answer:

13 1/8

Step-by-step explanation:

3/2* 7/2*5/2

= 105/8

= 13 1/8

8 0
4 years ago
Let z denote a random variable that has a standard normal distribution. Determine each of the probabilities below. (Round all an
Gelneren [198K]

Answer:

(a) P (<em>Z</em> < 2.36) = 0.9909                    (b) P (<em>Z</em> > 2.36) = 0.0091

(c) P (<em>Z</em> < -1.22) = 0.1112                      (d) P (1.13 < <em>Z</em> > 3.35)  = 0.1288

(e) P (-0.77< <em>Z</em> > -0.55)  = 0.0705       (f) P (<em>Z</em> > 3) = 0.0014

(g) P (<em>Z</em> > -3.28) = 0.9995                   (h) P (<em>Z</em> < 4.98) = 0.9999.

Step-by-step explanation:

Let us consider a random variable, X \sim N (\mu, \sigma^{2}), then Z=\frac{X-\mu}{\sigma}, is a standard normal variate with mean, E (<em>Z</em>) = 0 and Var (<em>Z</em>) = 1. That is, Z \sim N (0, 1).

In statistics, a standardized score is the number of standard deviations an observation or data point is above the mean.  The <em>z</em>-scores are standardized scores.

The distribution of these <em>z</em>-scores is known as the standard normal distribution.

(a)

Compute the value of P (<em>Z</em> < 2.36) as follows:

P (<em>Z</em> < 2.36) = 0.99086

                   ≈ 0.9909

Thus, the value of P (<em>Z</em> < 2.36) is 0.9909.

(b)

Compute the value of P (<em>Z</em> > 2.36) as follows:

P (<em>Z</em> > 2.36) = 1 - P (<em>Z</em> < 2.36)

                   = 1 - 0.99086

                   = 0.00914

                   ≈ 0.0091

Thus, the value of P (<em>Z</em> > 2.36) is 0.0091.

(c)

Compute the value of P (<em>Z</em> < -1.22) as follows:

P (<em>Z</em> < -1.22) = 0.11123

                   ≈ 0.1112

Thus, the value of P (<em>Z</em> < -1.22) is 0.1112.

(d)

Compute the value of P (1.13 < <em>Z</em> > 3.35) as follows:

P (1.13 < <em>Z</em> > 3.35) = P (<em>Z</em> < 3.35) - P (<em>Z</em> < 1.13)

                            = 0.99960 - 0.87076

                            = 0.12884

                            ≈ 0.1288

Thus, the value of P (1.13 < <em>Z</em> > 3.35)  is 0.1288.

(e)

Compute the value of P (-0.77< <em>Z</em> > -0.55) as follows:

P (-0.77< <em>Z</em> > -0.55) = P (<em>Z</em> < -0.55) - P (<em>Z</em> < -0.77)

                                = 0.29116 - 0.22065

                                = 0.07051

                                ≈ 0.0705

Thus, the value of P (-0.77< <em>Z</em> > -0.55)  is 0.0705.

(f)

Compute the value of P (<em>Z</em> > 3) as follows:

P (<em>Z</em> > 3) = 1 - P (<em>Z</em> < 3)

             = 1 - 0.99865

             = 0.00135

             ≈ 0.0014

Thus, the value of P (<em>Z</em> > 3) is 0.0014.

(g)

Compute the value of P (<em>Z</em> > -3.28) as follows:

P (<em>Z</em> > -3.28) = P (<em>Z</em> < 3.28)

                    = 0.99948

                    ≈ 0.9995

Thus, the value of P (<em>Z</em> > -3.28) is 0.9995.

(h)

Compute the value of P (<em>Z</em> < 4.98) as follows:

P (<em>Z</em> < 4.98) = 0.99999

                   ≈ 0.9999

Thus, the value of P (<em>Z</em> < 4.98) is 0.9999.

**Use the <em>z</em>-table for the probabilities.

3 0
3 years ago
Other questions:
  • consuela earns a salary of $40,000 per year plus a commission of $1000 for each car she sells right and solve an equation that s
    12·2 answers
  • Is it bigger 0.000 01 or is it 0.001
    7·2 answers
  • A measure of ________ for a numerical data set describes how its values vary with a single number
    8·1 answer
  • Write the phrase as an elgebric expression. 6 less than a number times 11. ​
    13·1 answer
  • The equation of line EF is y = 1 over 2 x + 6. Write an equation of a line parallel to line EF in slope-intercept form that cont
    8·1 answer
  • Solve for n. 2n − 35=5
    5·2 answers
  • Help me out please. ​
    8·1 answer
  • 20 PTS+ Brainliest if correct
    9·2 answers
  • What is the square root of 34685
    10·2 answers
  • What is the answer to 3v − 2 = 1
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!