Answer: 0.1457
Step-by-step explanation:
Let p be the population proportion.
Given: The proportion of Americans who are afraid to fly is 0.10.
i.e. p= 0.10
Sample size : n= 1100
Sample proportion of Americans who are afraid to fly =
We assume that the population is normally distributed
Now, the probability that the sample proportion is more than 0.11:
![P(\hat{p}>0.11)=P(\dfrac{\hat{p}-p}{\sqrt{\dfrac{p(1-p)}{n}}}>\dfrac{0.11-0.10}{\sqrt{\dfrac{0.10(0.90)}{1100}}})\\\\=P(z>\dfrac{0.01}{0.0090453})\ \ \ [\because z=\dfrac{\hat{p}-p}{\sqrt{\dfrac{p(1-p)}{n}}} ]\\\\=P(z>1.1055)\\\\=1-P(z\leq1.055)\\\\=1-0.8543=0.1457\ \ \ [\text{using z-table}]](https://tex.z-dn.net/?f=P%28%5Chat%7Bp%7D%3E0.11%29%3DP%28%5Cdfrac%7B%5Chat%7Bp%7D-p%7D%7B%5Csqrt%7B%5Cdfrac%7Bp%281-p%29%7D%7Bn%7D%7D%7D%3E%5Cdfrac%7B0.11-0.10%7D%7B%5Csqrt%7B%5Cdfrac%7B0.10%280.90%29%7D%7B1100%7D%7D%7D%29%5C%5C%5C%5C%3DP%28z%3E%5Cdfrac%7B0.01%7D%7B0.0090453%7D%29%5C%20%5C%20%5C%20%5B%5Cbecause%20z%3D%5Cdfrac%7B%5Chat%7Bp%7D-p%7D%7B%5Csqrt%7B%5Cdfrac%7Bp%281-p%29%7D%7Bn%7D%7D%7D%20%5D%5C%5C%5C%5C%3DP%28z%3E1.1055%29%5C%5C%5C%5C%3D1-P%28z%5Cleq1.055%29%5C%5C%5C%5C%3D1-0.8543%3D0.1457%5C%20%5C%20%5C%20%5B%5Ctext%7Busing%20z-table%7D%5D)
Hence, the probability that the sample proportion is more than 0.11 = 0.1457
Step-by-step explanation:
oh, come on. you can just use common sense.
a local minimum is a point where the curve goes down to, and then turns around and starts to go up again. that point in the middle, where it turns around and does not go down any further, is the minimum.
for the maximum the same thing applies, just in the other direction (the curve goes up and turns around to go back down again).
a)
the local minimum values (y) are
-2, -1
b)
the values of x where it had these minimum values are
-1, +3
Answer:
5 feet
Step-by-step explanation:
Divide 60 inches by 12
Your answer is 5 feet.
Hope this helped :)
Leonard method is likely to to give an accurate estimate of the mean since his sample was randomly selected from campers at his camp.
hope this helped