Answer:
Approximately 66.4 Meters
Step-by-step explanation:
So we have a rectangle with a width of 18.8 meters and a diagonal with 23.7 meters. To find the perimeter, we need to find the length first. Since a rectangle has four right angles, we can use the Pythagorean Theorem, where the diagonal is the hypotenuse.

Plug in 18.8 for either <em>a </em>or <em>b. </em>Plug in the diagonal 23.7 for <em>c. </em>
<em />
Therefore, the length is 14.4 meters. Now, find the perimeter:

Their slopes must be the same, but with different y-intercepts.
Here is an example: 2x + 1 and 2x + 4 are parallel lines.
Answer:
- 3.5229
Step-by-step explanation:
Using the rules of logarithms
logx + logy = log(xy)
= n
Given
3 ≈ 0.4771, then
0.0003
=
(3 ×
)
=
3 +

≈ 0.4771 - 4
≈ - 3.5229 ( to 4 dec. places )
Question 1:
--------------------------------------------------------------------
Find Slope
--------------------------------------------------------------------
Equation: y = 5x - 2
Slope = 5
Slope of parallel line = 5
--------------------------------------------------------------------
Insert slope into the general equation y = mx + c
--------------------------------------------------------------------
y = 5x + c
--------------------------------------------------------------------
Find y-intercept
--------------------------------------------------------------------
At point (2, -1)
y = 5x + c
-1 = 5(2) + c
c = -1 - 10
c = -11
--------------------------------------------------------------------
Insert y-intercept into the equation
--------------------------------------------------------------------
y = 5x + c
y = 5x - 11
--------------------------------------------------------------------
Answer: y = 5x - 11
--------------------------------------------------------------------
Question 2:
--------------------------------------------------------------------
Find Slope
--------------------------------------------------------------------
y = 9x
Slope = 9
Slope of the parallel line = 9
--------------------------------------------------------------------
Insert slope into the equation y = mx + c
--------------------------------------------------------------------
y = 9x + c
--------------------------------------------------------------------
Find y-intercept
--------------------------------------------------------------------
y = 9x + c
At point (0, 5)
5 = 9(0) + c
c = 5
--------------------------------------------------------------------
Insert y-intercept into the equation
--------------------------------------------------------------------
y = 9x + c
y = 9x + 5
--------------------------------------------------------------------
Answer: y = 9x + 5
--------------------------------------------------------------------
Answer:
x = 7/9
Step-by-step explanation: