The value of matrix A is ![A =\left[\begin{array}{cc}0&4\\-8&12\end{array}\right]](https://tex.z-dn.net/?f=A%20%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D0%264%5C%5C-8%2612%5Cend%7Barray%7D%5Cright%5D)
<h3>How to determine the matrix A?</h3>
The given parameters are:
at ![v_1 = \left[\begin{array}{c}1&1\end{array}\right]](https://tex.z-dn.net/?f=v_1%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D1%261%5Cend%7Barray%7D%5Cright%5D)
at ![v_2 = \left[\begin{array}{c}1&2\end{array}\right]](https://tex.z-dn.net/?f=v_2%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D1%262%5Cend%7Barray%7D%5Cright%5D)
The matrix A is calculated using:
A = S ∧ S⁻¹
Where:
![S = \left[\begin{array}{cc}v_1&v_2\end{array}\right]](https://tex.z-dn.net/?f=S%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Dv_1%26v_2%5Cend%7Barray%7D%5Cright%5D)
![\lambda = \left[\begin{array}{cc}\lambda_1&0\\0&\lambda_2\end{array}\right]](https://tex.z-dn.net/?f=%5Clambda%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D%5Clambda_1%260%5C%5C0%26%5Clambda_2%5Cend%7Barray%7D%5Cright%5D)
![\lambda =\left[\begin{array}{cc}4&0\\0&8\end{array}\right]](https://tex.z-dn.net/?f=%5Clambda%20%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D4%260%5C%5C0%268%5Cend%7Barray%7D%5Cright%5D)
Next, we have:
![S = \left[\begin{array}{cc}v_1&v_2\end{array}\right]](https://tex.z-dn.net/?f=S%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Dv_1%26v_2%5Cend%7Barray%7D%5Cright%5D)
This gives
![S =\left[\begin{array}{cc}1&1\\1&2\end{array}\right]](https://tex.z-dn.net/?f=S%20%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D1%261%5C%5C1%262%5Cend%7Barray%7D%5Cright%5D)
Calculate the determinant of S
|S| = 1 * 2 - 1 * 1
|S| = 1
So, the inverse of S is:
![S^{-1} = \frac{1}{1} * \left[\begin{array}{cc}2&-1\\-1&1\end{array}\right]\\](https://tex.z-dn.net/?f=S%5E%7B-1%7D%20%3D%20%5Cfrac%7B1%7D%7B1%7D%20%20%2A%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D2%26-1%5C%5C-1%261%5Cend%7Barray%7D%5Cright%5D%5C%5C)
Evaluate
![S^{-1} = \left[\begin{array}{cc}2&-1\\-1&1\end{array}\right]\\](https://tex.z-dn.net/?f=S%5E%7B-1%7D%20%3D%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D2%26-1%5C%5C-1%261%5Cend%7Barray%7D%5Cright%5D%5C%5C)
Recall that:
A = S ∧ S⁻¹
So, we have:
![A =\left[\begin{array}{cc}1&1\\1&2\end{array}\right] * \left[\begin{array}{cc}4&0\\0&8\end{array}\right] * \left[\begin{array}{cc}2&-1\\-1&1\end{array}\right]](https://tex.z-dn.net/?f=A%20%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D1%261%5C%5C1%262%5Cend%7Barray%7D%5Cright%5D%20%2A%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D4%260%5C%5C0%268%5Cend%7Barray%7D%5Cright%5D%20%2A%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D2%26-1%5C%5C-1%261%5Cend%7Barray%7D%5Cright%5D)
Multiply the first two matrices
![A =\left[\begin{array}{cc}1 * 4 + 1 * 0&1 * 0 + 1 * 8\\1 * 4 + 2 * 0&1 * 0 + 2 * 8\end{array}\right] * \left[\begin{array}{cc}2&-1\\-1&1\end{array}\right]](https://tex.z-dn.net/?f=A%20%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D1%20%2A%204%20%2B%201%20%2A%200%261%20%2A%200%20%2B%201%20%2A%208%5C%5C1%20%2A%204%20%2B%202%20%2A%200%261%20%2A%200%20%2B%202%20%2A%208%5Cend%7Barray%7D%5Cright%5D%20%2A%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D2%26-1%5C%5C-1%261%5Cend%7Barray%7D%5Cright%5D)
Evaluate
![A =\left[\begin{array}{cc}4&8\\4&16\end{array}\right] * \left[\begin{array}{cc}2&-1\\-1&1\end{array}\right]](https://tex.z-dn.net/?f=A%20%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D4%268%5C%5C4%2616%5Cend%7Barray%7D%5Cright%5D%20%2A%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D2%26-1%5C%5C-1%261%5Cend%7Barray%7D%5Cright%5D)
Evaluate the product
![A =\left[\begin{array}{cc}4*2+8*-1&4 * -1 + 8 * 1\\4 * 2 + 16 * -1&4 * -1 + 16 * 1\end{array}\right]](https://tex.z-dn.net/?f=A%20%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D4%2A2%2B8%2A-1%264%20%2A%20-1%20%2B%208%20%2A%201%5C%5C4%20%2A%202%20%2B%2016%20%2A%20-1%264%20%2A%20-1%20%2B%2016%20%2A%201%5Cend%7Barray%7D%5Cright%5D)
Evaluate
![A =\left[\begin{array}{cc}0&4\\-8&12\end{array}\right]](https://tex.z-dn.net/?f=A%20%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D0%264%5C%5C-8%2612%5Cend%7Barray%7D%5Cright%5D)
Hence, the value of matrix A is ![A =\left[\begin{array}{cc}0&4\\-8&12\end{array}\right]](https://tex.z-dn.net/?f=A%20%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D0%264%5C%5C-8%2612%5Cend%7Barray%7D%5Cright%5D)
Read more about matrices at:
brainly.com/question/11989522
#SPJ1