T -1,-1 ect ect hope helps
9514 1404 393
Answer:
a) ∆ABC ~ ∆EDC by AA similarity
b) ED/AB = 3/4
c) 15 cm
Step-by-step explanation:
a) Two angles in each triangle are the same, so the AA similarity postulate can be used to declare the ∆ABC ~ ∆EDC. (Each triangle includes a right angle and angle C.)
__
b) Corresponding sides are ED/AB, DC/BC, EC/AC. The ratio of corresponding sides is ED/BC = (12 cm)/(16 cm) = 3/4.
__
c) Using the ratios identified above, we have ...
DC/BC = 3/4 = x/(20 cm)
x = 3/4(20 cm)
x = 15 cm
Answer:
x = 36
Step-by-step explanation:
<em>A triangle has 180°</em>.
That <em>third angle is 360 - 8x</em>.
So the equation is: <em>180 = 2x + x + 360 - 8x</em>.
Simplify: 180 = -5x + 360
Add/Subtract: 5x = 180
Divide: x = 36.
Answer:
Step-by-step explanation:
Problem One
All quadrilaterals have angles that add up to 360 degrees.
Tangents touch the circle in such a way that the radius and the tangent form a right angle at the point of contact.
Solution
x + 115 + 90 + 90 = 360
x + 295 = 360
x + 295 - 295 = 360 - 295
x = 65
Problem Two
From the previous problem, you know that where the 6 and 8 meet is a right angle.
Therefore you can use a^2 + b^2 = c^2
a = 6
b =8
c = ?
6^2 + 8^2 = c^2
c^2 = 36 + 64
c^2 = 100
sqrt(c^2) = sqrt(100)
c = 10
x = 10
Problem 3
No guarantees on this one. I'm not sure how the diagram is set up. I take the 4 to be the length from the bottom of the line marked 10 to the intersect point of the tangent with the circle.
That means that the measurement left is 10 - 4 = 6
x and 6 are both tangents from the upper point of the line marked 10.
Therefore x = 6
The answer is 4. the square root of 16=4. 4*4 =16