Answer: FALSE .
____________________________________________
For two (2) angles to be supplementary, they must add up to 180° ;
and the two angles given — 98° and 72° — add up to 170°.
{Note: 98 + 72 = 170 — NOT "180" ; and as such are NOT supplementary.}.
______________________________________________________________
Answer:
y = 3x + 6
Step-by-step explanation:
The domain is you x values. You need to substitute the x values into both functions to see which one produces the plots on the graph.
<h3>y = 2x + 4</h3>
when x = -3, y = 2(-3) + 4 = -6 + 4 = -2
when x = -2, y = 2(-2) + 4 = = -4 + 4 = 0
when x = -1, y = 2(-1) + 4 = = -2 + 4 = 2
when x = -0, y = 2(0) + 4 = 0 + 4 = 4
<h3>y = 3x + 6</h3>
when x = -3, y = 3(-3) + 6 = -9 + 6 = -3
when x = -2, y = 3(-2) + 6 = = -6 + 6 = 0
when x = -1, y = 3(-1) + 6 = = -3 + 6 = 3
when x = -0, y = 3(0) + 6 = 0 + 6 = 6
The points on the graph are (-3, -3), (-2, 0), (-1, 3) and (0, 6)
This is same as the results from the function y = 3x + 6
Answer:
Determine if the sequence is arithmetic (Do you add, or subtract, the same amount from one term to the next?)
Find the common difference.
Step-by-step explanation:
Answer: It’s 1
Explanation: it’s 1
Answer:
Step-by-step explanation:
The standard form of an equation for a straight line is y=mx+b, where m is the slope and b is the y-intercept (the value of y when x = 0).
We can calculate the slope from the two given points, (6,-3) and (-6,-5). Slope is Rise/Run, where Rise is the change in y and Run is the change in x.
From the two given points, starting at (-6,-5) and going to (6,-3):
Rise = (-3 - (-5)) = +2
Run = (6 - (-6)) = 12
Rise/Run (slope) = 2/12 or 1/6
The equation becomes y = (1/6)x + b
We can find b by enterieng either of the two given points and solving for b. I'll pick (6,-3):
y = (1/6)x + b
-3 = (1/6)*(6) + b
-3 = 1 + b [Now you can see why I chose (6,-3)]
b = -4
The equation is y = (1/6)x - 4
Check this with a DESMOS graph (attached).