The numerical sum of the degree measures of m ∠DEA and m ∠AEF and m ∠DEF is 360°; The numerical measures of the angles is,
m ∠DEA = 56°
m ∠AEF = 158°
m ∠DEF = 146°
Based on the given data,
m ∠DEA= x + 30,
m ∠AEF= x + 132, and
m ∠DEF= 146 degrees
If the sum of two linear angles is 360° then, they are known as supplementary angles.
∠A + ∠B + ∠C = 360°, (∠A and ∠B and ∠C are linear angles.)
So,
We can write,
m ∠AEF + m ∠DEA + m ∠DEF = 360°
( x + 132) + (x + 30) + 146 = 360°
x + 30 + x + 132 + 146 = 360°
2x + 308 = 360°
2x = 360° - 308
x = 52/2
x =26
Now, we will substitute the value of x = 26° in the ∠DEA and ∠AEF, hence we get:
m ∠DEA = x + 30
m ∠DEA = 26 + 30
m ∠DEA = 56 degrees
Also,
m ∠AEF = x + 132
m ∠AEF = 26 + 132
m ∠AEF = 158
Hence,
m ∠DEA + m ∠AEF + m ∠DEF = 360°
56 + 158 + 146 = 360°
360° = 360°
Therefore,
Therefore, the numerical sum of the degree measures of m ∠DEA and m ∠AEF and m ∠DEF is 360°; The numerical measures of the angles is,
m ∠DEA = 56°
m ∠AEF = 158°
m ∠DEF = 146°
To learn more about information visit Supplementary angles :
brainly.com/question/17550923
#SPJ1
Q17:
one week = $560
52 weeks = 560 x 52 = $29120
Q18:
one year = $28500
52 weeks = 28500
1 week = 28500 ÷ 52 = $548
Q19:
5% of $300000 = 0.05 x 300000 = $15000
$15000 + $12000 = $27000
A) A=500(1+0.015)^t
b)800=500(1.015)^t
800/500=1.015^t
t=log(800/500)/log(1.015)
t=31.6 years
The hour hand is 30 mm hope this is right
Answer:
14/25
Step-by-step explanation:
All percentages can be represented by PERCENTAGE/100
So 56% is 56/100
Then simplify by dividing by 2
28/50 Then simplify again by 2
14/25