Choice C , Company C and Company D. hope I helped.
We know that
the equation of the parabola is of the form
y=ax²+bx+c
in this problem
y=1/4x²−x+3
where
a=1/4
b=-1
c=3
the coordinates of the focus are
(-b/2a,(1-D)/4a)
where D is the discriminant b²-4ac
D=(-1)²-4*(1/4)*3-----> D=1-3---> D=-2
therefore
x coordinate of the focus
-b/2a----> 1/[2*(-1/4)]----> 2
y coordinate of the focus
(1-D)/4a------> (1+2)/(4/4)---> 3
the coordinates of the focus are (2,3)
Correct Ans:Option A. 0.0100
Solution:We are to find the probability that the class average for 10 selected classes is greater than 90. This involves the utilization of standard normal distribution.
First step will be to convert the given score into z score for given mean, standard deviation and sample size and then use that z score to find the said probability. So converting the value to z score:

So, 90 converted to z score for given data is 2.326. Now using the z-table we are to find the probability of z score to be greater than 2.326. The probability comes out to be 0.01.
Therefore, there is a 0.01 probability of the class average to be greater than 90 for the 10 classes.
Evaluate.
1934917632
this is evaluation
Definition of quadratic a formula
= a formula that gives the solutions of the general quadratic equation ax2 + bx + c = 0 and that is usually written in the form x = (-b ± √(b2 − 4ac))/(2a)