1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Serga [27]
3 years ago
11

85 is greater than the difference of x and63

Mathematics
1 answer:
miss Akunina [59]3 years ago
8 0
85 > x-63

This is how you would arrange the problem,


isolate the X by adding 63 to 85 to get 148,
Flip the inequality to <

resulting in X<148.
You might be interested in
What is the common difference in this sequence: 5, 17, 29, 41, 53?
irina1246 [14]
The common difference is 12.
5 0
3 years ago
Read 2 more answers
Define the double factorial of n, denoted n!!, as follows:n!!={1⋅3⋅5⋅⋅⋅⋅(n−2)⋅n} if n is odd{2⋅4⋅6⋅⋅⋅⋅(n−2)⋅n} if n is evenand (
tekilochka [14]

Answer:

Radius of convergence of power series is \lim_{n \to \infty}\frac{a_{n}}{a_{n+1}}=\frac{1}{108}

Step-by-step explanation:

Given that:

n!! = 1⋅3⋅5⋅⋅⋅⋅(n−2)⋅n        n is odd

n!! = 2⋅4⋅6⋅⋅⋅⋅(n−2)⋅n       n is even

(-1)!! = 0!! = 1

We have to find the radius of convergence of power series:

\sum_{n=1}^{\infty}[\frac{8^{n}n!(3n+3)!(2n)!!}{2^{n}[(n+9)!]^{3}(4n+3)!!}](8x+6)^{n}\\\\\sum_{n=1}^{\infty}[\frac{8^{n}n!(3n+3)!(2n)!!}{2^{n}[(n+9)!]^{3}(4n+3)!!}]2^{n}(4x+3)^{n}\\\\\sum_{n=1}^{\infty}[\frac{8^{n}n!(3n+3)!(2n)!!}{[(n+9)!]^{3}(4n+3)!!}](x+\frac{3}{4})^{n}\\

Power series centered at x = a is:

\sum_{n=1}^{\infty}c_{n}(x-a)^{n}

\sum_{n=1}^{\infty}[\frac{8^{n}n!(3n+3)!(2n)!!}{2^{n}[(n+9)!]^{3}(4n+3)!!}](8x+6)^{n}\\\\\sum_{n=1}^{\infty}[\frac{8^{n}n!(3n+3)!(2n)!!}{2^{n}[(n+9)!]^{3}(4n+3)!!}]2^{n}(4x+3)^{n}\\\\\sum_{n=1}^{\infty}[\frac{8^{n}4^{n}n!(3n+3)!(2n)!!}{[(n+9)!]^{3}(4n+3)!!}](x+\frac{3}{4})^{n}\\

a_{n}=[\frac{8^{n}4^{n}n!(3n+3)!(2n)!!}{[(n+9)!]^{3}(4n+3)!!}]\\\\a_{n+1}=[\frac{8^{n+1}4^{n+1}n!(3(n+1)+3)!(2(n+1))!!}{[(n+1+9)!]^{3}(4(n+1)+3)!!}]\\\\a_{n+1}=[\frac{8^{n+1}4^{n+1}(n+1)!(3n+6)!(2n+2)!!}{[(n+10)!]^{3}(4n+7)!!}]

Applying the ratio test:

\frac{a_{n}}{a_{n+1}}=\frac{[\frac{32^{n}n!(3n+3)!(2n)!!}{[(n+9)!]^{3}(4n+3)!!}]}{[\frac{32^{n+1}(n+1)!(3n+6)!(2n+2)!!}{[(n+10)!]^{3}(4n+7)!!}]}

\frac{a_{n}}{a_{n+1}}=\frac{(n+10)^{3}(4n+7)(4n+5)}{32(n+1)(3n+4)(3n+5)(3n+6)+(2n+2)}

Applying n → ∞

\lim_{n \to \infty}\frac{a_{n}}{a_{n+1}}= \lim_{n \to \infty}\frac{(n+10)^{3}(4n+7)(4n+5)}{32(n+1)(3n+4)(3n+5)(3n+6)+(2n+2)}

The numerator as well denominator of \frac{a_{n}}{a_{n+1}} are polynomials of fifth degree with leading coefficients:

(1^{3})(4)(4)=16\\(32)(1)(3)(3)(3)(2)=1728\\ \lim_{n \to \infty}\frac{a_{n}}{a_{n+1}}=\frac{16}{1728}=\frac{1}{108}

4 0
3 years ago
-5.5x+0.77=1.48 whats x
Nesterboy [21]

Answer:

X= -0.1290 (bar line on top of the 90)

Hope this helps!

Step-by-step explanation:

8 0
3 years ago
Read 2 more answers
Find the sum of the infinite geometric series: 1023 (0.25)-1 n=1 1,024 1 364 0 -1364 -1024​
ira [324]

Answer:1,364

Step-by-step explanation: I did the assignment

7 0
3 years ago
2. What is the value of win this equation?<br> 5w+ 3 = 9
Anuta_ua [19.1K]

Answer:

w = 1.2 or 6/5

Step-by-step explanation:

math

8 0
2 years ago
Other questions:
  • Can any one help me solve this ?
    7·1 answer
  • What's the function rule, I don't understand how to write a function rule using the ordered pairs in this table
    6·1 answer
  • Explain why it's your answer
    9·1 answer
  • 78.84 meters= Centimeter
    5·2 answers
  • A recipe called for the ratio of sugar to four to be 10:3.if you used 70 ounces of sugar how many Ounces of sugar what do you ne
    8·2 answers
  • Why is -10+(-10)=0 wrong
    8·2 answers
  • 100 PTS PLEASE HELP I DO NOT UNDERSTAND!!!!
    7·2 answers
  • 165 is what percent of 750?​
    14·2 answers
  • Write 107% as a decimal. Pls with solutions
    14·2 answers
  • When does a limit exist.
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!