Answer:
We conclude that:
![\:\sqrt[3]{200k^{15}}=2k^5\sqrt[3]{25}](https://tex.z-dn.net/?f=%5C%3A%5Csqrt%5B3%5D%7B200k%5E%7B15%7D%7D%3D2k%5E5%5Csqrt%5B3%5D%7B25%7D)
Hence, option B is correct.
Step-by-step explanation:
Given the expression
![\sqrt[3]{200k^{15}}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B200k%5E%7B15%7D%7D)
Apply radical rule:
![\sqrt[n]{ab}=\sqrt[n]{a}\sqrt[n]{b},\:\quad \mathrm{\:assuming\:}a\ge 0,\:b\ge 0](https://tex.z-dn.net/?f=%5Csqrt%5Bn%5D%7Bab%7D%3D%5Csqrt%5Bn%5D%7Ba%7D%5Csqrt%5Bn%5D%7Bb%7D%2C%5C%3A%5Cquad%20%5Cmathrm%7B%5C%3Aassuming%5C%3A%7Da%5Cge%200%2C%5C%3Ab%5Cge%200)
so the expression becomes
![\sqrt[3]{200k^{15}}=\sqrt[3]{200}\sqrt[3]{k^{15}}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B200k%5E%7B15%7D%7D%3D%5Csqrt%5B3%5D%7B200%7D%5Csqrt%5B3%5D%7Bk%5E%7B15%7D%7D)
first solving
![\sqrt[3]{k^{15}}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7Bk%5E%7B15%7D%7D)
Apply radical rule: ![\sqrt[n]{a^m}=a^{\frac{m}{n}},\:\quad \mathrm{\:assuming\:}a\ge 0](https://tex.z-dn.net/?f=%5Csqrt%5Bn%5D%7Ba%5Em%7D%3Da%5E%7B%5Cfrac%7Bm%7D%7Bn%7D%7D%2C%5C%3A%5Cquad%20%5Cmathrm%7B%5C%3Aassuming%5C%3A%7Da%5Cge%200)
![\sqrt[3]{k^{15}}=k^{\frac{15}{3}}=k^5](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7Bk%5E%7B15%7D%7D%3Dk%5E%7B%5Cfrac%7B15%7D%7B3%7D%7D%3Dk%5E5)
then solving
![\sqrt[3]{200}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B200%7D)
prime factorization: 200: 2³ · 5²
![=\sqrt[3]{2^3\cdot \:5^2}](https://tex.z-dn.net/?f=%3D%5Csqrt%5B3%5D%7B2%5E3%5Ccdot%20%5C%3A5%5E2%7D)
Apply radical rule:
![\sqrt[n]{ab}=\sqrt[n]{a}\sqrt[n]{b},\:\quad \mathrm{\:assuming\:}a\ge 0,\:b\ge 0](https://tex.z-dn.net/?f=%5Csqrt%5Bn%5D%7Bab%7D%3D%5Csqrt%5Bn%5D%7Ba%7D%5Csqrt%5Bn%5D%7Bb%7D%2C%5C%3A%5Cquad%20%5Cmathrm%7B%5C%3Aassuming%5C%3A%7Da%5Cge%200%2C%5C%3Ab%5Cge%200)
![=\sqrt[3]{2^3}\sqrt[3]{5^2}](https://tex.z-dn.net/?f=%3D%5Csqrt%5B3%5D%7B2%5E3%7D%5Csqrt%5B3%5D%7B5%5E2%7D)
Apply radical rule:
![\sqrt[n]{a^n}=a,\:\quad \:a\ge 0](https://tex.z-dn.net/?f=%5Csqrt%5Bn%5D%7Ba%5En%7D%3Da%2C%5C%3A%5Cquad%20%5C%3Aa%5Cge%200)
so
![=2\sqrt[3]{5^2}](https://tex.z-dn.net/?f=%3D2%5Csqrt%5B3%5D%7B5%5E2%7D)
Thus, the main expression becomes
![\sqrt[3]{200k^{15}}=\sqrt[3]{200}\sqrt[3]{k^{15}}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B200k%5E%7B15%7D%7D%3D%5Csqrt%5B3%5D%7B200%7D%5Csqrt%5B3%5D%7Bk%5E%7B15%7D%7D)
![=2k^5\sqrt[3]{25}](https://tex.z-dn.net/?f=%3D2k%5E5%5Csqrt%5B3%5D%7B25%7D)
Therefore, we conclude that:
![\:\sqrt[3]{200k^{15}}=2k^5\sqrt[3]{25}](https://tex.z-dn.net/?f=%5C%3A%5Csqrt%5B3%5D%7B200k%5E%7B15%7D%7D%3D2k%5E5%5Csqrt%5B3%5D%7B25%7D)
Hence, option B is correct.
Answer:
Yep
Step-by-step explanation:
Seems legit to me at least
Answer:
5 / 13 is the fraction of girls on the field trip
5/13 * 130 = 50 girls on the trip
Or 10 groups of 13 and each group of 13 had 5 girls giving a total of
5 * 10 = 50 girls
To answer this item, we are to use the concept of combination. The equation is as follows,
nCr = (n!)/((r!)(n - r))!
Substituting the known values in the equation,
3C2 = 3!/(2!)(3-2)! = 3
Hence, the answer to this item is 3.
<em>ANSWER: 3</em>