Answer:
y = (11x + 13)e^(-4x-4)
Step-by-step explanation:
Given y'' + 8y' + 16 = 0
The auxiliary equation to the differential equation is:
m² + 8m + 16 = 0
Factorizing this, we have
(m + 4)² = 0
m = -4 twice
The complimentary solution is
y_c = (C1 + C2x)e^(-4x)
Using the initial conditions
y(-1) = 2
2 = (C1 -C2) e^4
C1 - C2 = 2e^(-4).................................(1)
y'(-1) = 3
y'_c = -4(C1 + C2x)e^(-4x) + C2e^(-4x)
3 = -4(C1 - C2)e^4 + C2e^4
-4C1 + 5C2 = 3e^(-4)..............................(2)
Solving (1) and (2) simultaneously, we have
From (1)
C1 = 2e^(-4) + C2
Using this in (2)
-4[2e^(-4) + C2] + 5C2 = 3e^(-4)
C2 = 11e^(-4)
C1 = 2e^(-4) + 11e^(-4)
= 13e^(-4)
The general solution is now
y = [13e^(-4) + 11xe^(-4)]e^(-4x)
= (11x + 13)e^(-4x-4)
the answer is 5 bebe. remember to use pemdas
p-parenthesis
e-exponents
m-multiplication
d-division
a-addition
s-subtraction
Direction: Isolate the variable by dividing each side by factors that don't contain the variable.
Here are the answers for all 15 questions:
1) x < - 2
2) x < 4
3) x > - 15/7
4) y < 28/5
5) x > 6
6) y > - 10/9
7) 0 < 333
8) x > 2
9) x > - 10
10) y > - 3
11) y > - 4
12) x > 3
13) x < 9/8
14) x > - 2
15) h < 7/2
Answer: p
c
Step-by-step explanation: