Answer:
The two population will become separate species due to allopatric speciation
Explanation:
Allopatric speciation is also known as geographic speciation. In this speciation two populations of the same species isolated geographically from each other which prevents gene flow between them and the two populations evolve separately and over time, it leads to the creation of a separate species.
So here as interbreeding within the hybrid zone of the mountain pass decreased over time so it will lead to speciation in these populations and they will evolve into two separate populations due to lack of gene flow as a result of geographical isolation.
Answer:
48 amino acids
Explanation:
The wild type gene codes for a protein with 100 amino acids. One amino acid is encoded by one triplet code of the gene. This means that the wild type gene has a total 100 triplets or 300 nucleotides to code for a protein of 100 amino acid. Mutation in this protein has introduced the code "UAA" at the 49th codon. The code "UAA" is a stop codon. Therefore, the mRNA transcribed from the mutant allele would code for a protein having 48 amino acids as the protein synthesis will be stopped once the stop codon at the 49th position is read.
Long-term potentiation (LTP) is considered a cellular correlate of learning and memory. The presence of G protein-activated inwardly rectifying K(+) (GIRK) channels near excitatory synapses on dendritic spines suggests their possible involvement in synaptic plasticity. However, whether activity-dependent regulation of channels affects excitatory synaptic plasticity is unknown. In a companion article we have reported activity-dependent regulation of GIRK channel density in cultured hippocampal neurons that requires activity oF receptors (NMDAR) and protein phosphatase-1 (PP1) and takes place within 15 min. In this study, we performed whole-cell recordings of cultured hippocampal neurons and found that NMDAR activation increases basal GIRK current and GIRK channel activation mediated by adenosine A(1) receptors, but not GABA(B) receptors. Given the similar involvement of NMDARs, adenosine receptors, and PP1 in depotentiation of LTP caused by low-frequency stimulation that immediately follows LTP-inducing high-frequency stimulation, we wondered whether NMDAR-induced increase in GIRK channel surface density and current may contribute to the molecular mechanisms underlying this specific depotentiation. Remarkably, GIRK2 null mutation or GIRK channel blockade abolishes depotentiation of LTP, demonstrating that GIRK channels are critical for depotentiation, one form of excitatory synaptic plasticity.
Learn more about receptors here:
brainly.com/question/11985070
#SPJ4
Answer:
b the turgor pressure will increase but the cell wall prevents the cell from exploding
Explanation:
The plant cells are exposed in a change of pressure liquid depending the quantity of solids that are inside and outside the cell. Like in this case, the hypotonic solution is the one that has less solids outside the cell, that is the reason why the water enters the cell to equilibrate the concentration of solids inside and outside the cell.
All of the following contributes to turbulent blood flow except third and fourth heart sounds.
<h3><u>
Explanation:</u></h3>
The blood flow in human body is always described to be laminar. Some conditions cause the high flow when there is an ascending aorta. This causes the laminar flow of blood into turbulent. When this occurs the flow of the blood will not be smooth and linear.
When the kinetic energy in the fluid flow increases the turbulent flow of blood occurs. Both the magnitude and the direction of the flow changes in this type of blood flow. These are caused by the irregularities in the vessel walls, flow rates to ne higher and opening of the valves of the heart.