9514 1404 393
Answer:
N'(-3, 4), P'(-1, 4), Q'(-4, 1)
Step-by-step explanation:
The transformation is telling you to subtract 5 from each x-coordinate, and add 2 to each y-coordinate.
F the diameter is 1/2 mile, that is 0.5 mile, then the radius is 0.25 -half of it!
the angular speed is theta/time, which means
w=theta/time
but another formula for it is Velocity*radians
w=velocity*radians
velocity is 180 mph and radians are (revolution/2 radius), that is:
w=180*(1/2*0.25)
and if we calculate this, we have: w=114.59, which is the correct answer!
Answer:
105 degrees
Step-by-step explanation:
since alternate interior angles are equal they have to be the same, so you just divide by two to get 105.
36 all together.
22 first
14 second
8 random chosen
A) all first shift:
One is pulled 22/36
Second is pulled 21/35
Third is pulled 20/34
Fourth 19/33
Fifth 18/32
Sixth 17/31
Seventh 16/30
Eighth 15/29
Multiply all those together
Probability of all first shift is 0.010567296996663
(That means it's not happening anytime soon lol)
B) one worker 14/36
Second 13/35
Third 12/34
Fourth 11/33
Fifth 10/32
Sixth 9/31
Seventh 8/30
Eighth 7/29
Multiply all those together
Probability of all second shift is 0.000099238805645
(That means it's likely to see 100x more picks of all first shift workers before you see this once.. lol)
C) 22/36
21/35
20/34
19/33
18/32
17/31
Multiply..
Probability.. 0.038306451612903
D) 14/36
13/35
12/34
11/33
X... p=0.016993464052288
Probably not correct, haven't done probability in years.
Answer:
If thrown up with the same speed, the ball will go highest in Mars, and also it would take the ball longest to reach the maximum and as well to return to the ground.
Step-by-step explanation:
Keep in mind that the gravity on Mars; surface is less (about just 38%) of the acceleration of gravity on Earth's surface. Then when we use the kinematic formulas:

the acceleration (which by the way is a negative number since acts opposite the initial velocity and displacement when we throw an object up on either planet.
Therefore, throwing the ball straight up makes the time for when the object stops going up and starts coming down (at the maximum height the object gets) the following:

When we use this to replace the 't" in the displacement formula, we et:

This tells us that the smaller the value of "g", the highest the ball will go (g is in the denominator so a small value makes the quotient larger)
And we can also answer the question about time, since given the same initial velocity
, the smaller the value of "g", the larger the value for the time to reach the maximum, and similarly to reach the ground when coming back down, since the acceleration is smaller (will take longer in Mars to cover the same distance)