Answer:
For
x
=
6
y
=
−
6
+
6
y
=
0
or
(
6
,
0
)
Second Point: For
y
=
4
y
=
−
4
+
6
y
=
2
or
(
4
,
2
)
We can next plot the two points on the coordinate plane:
graph{((x-6)^2+y^2-0.035)((x-4)^2+(y-2)^2-0.035)=0 [-10, 10, -5, 5]}
Now, we can draw a straight line through the two points to graph the line:
graph{(y+x-6)((x-6)^2+y^2-0.035)((x-4)^2+(y-2)^2-0.035)=0 [-10, 10, -5, 5]}
Step-by-step explanation:
Interesting, have you tried Wikipedia?
Answer:
The ball reached its maximum height of (
) in (
).
Step-by-step explanation:
This question is essentially asking one to find the vertex of the parabola formed by the given equation. One could plot the equation, but it would be far more efficient to complete the square. Completing the square of an equation is a process by which a person converts the equation of a parabola from standard form to vertex form.
The first step in completing the square is to group the quadratic and linear term:

Now factor out the coefficient of the quadratic term:

After doing so, add a constant such that the terms inside the parenthesis form a perfect square, don't forget to balance the equation by adding the inverse of the added constant term:

Now take the balancing term out of the parenthesis:

Simplify:

The x-coordinate of the vertex of the parabola is equal to the additive inverse of the numerical part of the quadratic term. The y-coordinate of the vertex is the constant term outside of the parenthesis. Thus, the vertex of the parabola is:

If period of

is one-half the period of

and
<span>

has a period of 2π, then

and

.
</span>
To find the period of sine function

we use the rule

.
<span /><span />
f is sine function where f (0)=0, then c=0; with period

, then

, because

.
To find a we consider the condition

, from where

.
If the amplitude of

is twice the amplitude of

, then

has a product factor twice smaller than

and while period of

<span> </span> is 2π and g(0)=0, we can write

.
Answer:
The second table because they are almost the same thing
Step-by-step explanation: