Answer:
see below
Step-by-step explanation:
The first part of the function, f(x) = -2x (for x < -1), is only graphed correctly in the first and third graphs.
The second part of the function, f(x) = -1 (for -1 ≤ x < 2) is only graphed correctly in the first graph, which also correctly graphs the third part of the function,
The appropriate choice is the first graph.
Her conception is that the view of the sun is bright, her perception is that the bright sun has a positive impact on her, and her interpretation is that her body doesn't mind the heat yet welcomes it. The answer here is Perception.
It is 5389.030 to nearest hundredth
General Idea:
Domain of a function means the values of x which will give a DEFINED output for the function.
Applying the concept:
Given that the x represent the time in seconds, f(x) represent the height of food packet.
Time cannot be a negative value, so

The height of the food packet cannot be a negative value, so

We need to replace
for f(x) in the above inequality to find the domain.
![-15x^2+6000\geq 0 \; \; [Divide \; by\; -15\; on\; both\; sides]\\ \\ \frac{-15x^2}{-15} +\frac{6000}{-15} \leq \frac{0}{-15} \\ \\ x^2-400\leq 0\;[Factoring\;on\;left\;side]\\ \\ (x+200)(x-200)\leq 0](https://tex.z-dn.net/?f=%20-15x%5E2%2B6000%5Cgeq%200%20%5C%3B%20%5C%3B%20%20%5BDivide%20%5C%3B%20by%5C%3B%20-15%5C%3B%20on%5C%3B%20both%5C%3B%20sides%5D%5C%5C%20%5C%5C%20%5Cfrac%7B-15x%5E2%7D%7B-15%7D%20%2B%5Cfrac%7B6000%7D%7B-15%7D%20%5Cleq%20%5Cfrac%7B0%7D%7B-15%7D%20%5C%5C%20%5C%5C%20x%5E2-400%5Cleq%200%5C%3B%5BFactoring%5C%3Bon%5C%3Bleft%5C%3Bside%5D%5C%5C%20%5C%5C%20%28x%2B200%29%28x-200%29%5Cleq%200%20)
The possible solutions of the above inequality are given by the intervals
. We need to pick test point from each possible solution interval and check whether that test point make the inequality
true. Only the test point from the solution interval [-200, 200] make the inequality true.
The values of x which will make the above inequality TRUE is 
But we already know x should be positive, because time cannot be negative.
Conclusion:
Domain of the given function is 