<em>Answer:192.53</em>
<em>Step-by-step explanation:</em>
<em> You just Add:</em>
$82.53+$110.00=192.53
Your answer is: 192.53
Answer:
A) 3 in
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
<u>Geometry</u>
- Surface Area of a Sphere: SA = 4πr²
- Diameter: d = 2r
Step-by-step explanation:
<u>Step 1: Define</u>
SA = 23 in²
<u>Step 2: Find </u><em><u>r</u></em>
- Substitute [SAS]: 23 in² = 4πr²
- Isolate <em>r </em>term: 23 in²/(4π) = r²
- Isolate <em>r</em>: √[23 in²/(4π)] = r
- Rewrite: r = √[23 in²/(4π)]
- Evaluate: r = 1.35288 in
<u>Step 3: Find </u><em><u>d</u></em>
- Substitute [D]: d = 2(1.35288 in)
- Multiply: d = 2.70576 in
- Round: d ≈ 3 in
Answer:
5 units. Since they have the same y coordinate the x coordinate determines the distance from each other. In the case 9-4=5.
The total weight of candies is unknown. Let x = the total weight of candies.
"One student ate 3/20 of all candies and another 1.2 lb":
The first student ate (3/20)x plus 1.2 lb which is 0.15x + 1.2.
"The second student ate 3/5 of the candies and the remaining 0.3 lb."
The second student ate (3/5)x and 0.3 lb which is 0.6x + 0.3.
Altogether the 2 students ate 0.15x + 1.2 + 0.6x + 0.3.
That was all the amount of candies, so that sum equals x.
0.15x + 1.2 + 0.6x + 0.3 = x
Now we solve the equation for x to find what the total amount of candies was.
0.75x + 1.5 = x
-0.25x = -1.5
x = 6
The total amount of candies was 6 lb.
The first student ate 0.15x + 1.2 = 0.15(6) + 1.2 = 0.9 + 1.2 = 2.1, or 2.1 lb of candies.
The second student ate 0.6x + 0.3 = 0.6(6) + 0.3 = 3.6 + 0.3 = 3.9, or 3.9 lb of candies.
Answer: The first student ate 2.1 lb of candies, and the second student ate 3.9 lb of candies.