Answer:
x=6
Step-by-step explanation:
The sum of the angles is a right angle, which is 90 degrees
5x+ x+54 = 90
Combine like terms
6x+54 = 90
Subtract 54 from each side
6x+54-54 = 90-54
6x = 36
Divide each side by 6
6x/6 = 36/6
x= 6
I thank it is a. yards i am no sure that is right
Note that f(x) as given is <em>not</em> invertible. By definition of inverse function,


which is a cubic polynomial in
with three distinct roots, so we could have three possible inverses, each valid over a subset of the domain of f(x).
Choose one of these inverses by restricting the domain of f(x) accordingly. Since a polynomial is monotonic between its extrema, we can determine where f(x) has its critical/turning points, then split the real line at these points.
f'(x) = 3x² - 1 = 0 ⇒ x = ±1/√3
So, we have three subsets over which f(x) can be considered invertible.
• (-∞, -1/√3)
• (-1/√3, 1/√3)
• (1/√3, ∞)
By the inverse function theorem,

where f(a) = b.
Solve f(x) = 2 for x :
x³ - x + 2 = 2
x³ - x = 0
x (x² - 1) = 0
x (x - 1) (x + 1) = 0
x = 0 or x = 1 or x = -1
Then
can be one of
• 1/f'(-1) = 1/2, if we restrict to (-∞, -1/√3);
• 1/f'(0) = -1, if we restrict to (-1/√3, 1/√3); or
• 1/f'(1) = 1/2, if we restrict to (1/√3, ∞)
Equation is y^20 = ( )^2
Answer:
y to the power of 10.
Answer:
x = 3
y = 0
Step-by-step explanation:
The method of substitution is when one solves an equation for one of the variables, and then substitutes the expression into the other equation. After doing so, one will solve the other equation for the remaining variable and then backsolve for the first variable.
4x + 2y = 12
x = y + 3
The second equation is already sovled for parameter (x), subttiute this into the other equation,
4(y + 3) + 2y = 12
Distribute,
4y + 12 + 2y = 12
Simplify,
6y + 12 = 12
Inverse operations,
6y + 12 = 12
-12
6y = 0
/6
y = 0
Backsolve for (x), substitute the value of (y) into the equation for (x) and solve,
x = y + 3
x = 0 + 3
x = 3