Sum/difference:
Let

This means that

Now, assume that
is rational. The sum/difference of two rational numbers is still rational (so 5-x is rational), and the division by 3 doesn't change this. So, you have that the square root of 8 equals a rational number, which is false. The mistake must have been supposing that
was rational, which proves that the sum/difference of the two given terms was irrational
Multiplication/division:
The logic is actually the same: if we multiply the two terms we get

if again we assume x to be rational, we have

But if x is rational, so is -x/15, and again we come to a contradiction: we have the square root of 8 on one side, which is irrational, and -x/15 on the other, which is rational. So, again, x must have been irrational. You can prove the same claim for the division in a totally similar fashion.
Umbilical
point.
An
umbilic point, likewise called just an umbilic, is a point on a surface at
which the arch is the same toward any path.
In
the differential geometry of surfaces in three measurements, umbilics or
umbilical focuses are focuses on a surface that are locally round. At such
focuses the ordinary ebbs and flows every which way are equivalent,
consequently, both primary ebbs and flows are equivalent, and each digression
vector is a chief heading. The name "umbilic" originates from the
Latin umbilicus - navel.
<span>Umbilic
focuses for the most part happen as confined focuses in the circular area of
the surface; that is, the place the Gaussian ebb and flow is sure. For surfaces
with family 0, e.g. an ellipsoid, there must be no less than four umbilics, an
outcome of the Poincaré–Hopf hypothesis. An ellipsoid of unrest has just two
umbilics.</span>
Answer:
ok
Step-by-step explanation:
Answer:
-4
Step-by-step explanation:
y = -4x + 6 is the equation and -4 is the slope