<h3><u>Answer</u>;</h3>
B. When actin filaments are pulled toward the center of the sarcomere, the fiber shortens.
<h3><u>Explanation;</u></h3>
- <em><u>The events of muscle fiber shortening occurs with in the sacromeres in the fibers. </u></em>
- <em><u>Contraction of striated muscle fibers takes place as the sacromeres shorten as myosin heads pull on the actin filaments.</u></em>
- <em><u>Filament movement starts at the region or zone where thin and thick filaments overlap. </u></em>
- <em><u>Myofibril contains many sacromeres along its length and thuse myofibrils and muscle cells contract as the sacromeres contract.</u></em>
Answer:
V = 0.248 L
Explanation:
To do this, use the following equation:
P1*V1/T1 = P2*V2/T2
This equation is used to find a relation between two differents conditions of a same gas, which is this case. From this equation we can solve for V2.
Solving for V2:
V2 = P1*V1*T2/T1*P2
Temperature must be at Kelvin, so, we have to sum the temperature 273 to convert it in K.
Replacing the data we have:
V2 = 1 * 4.91 * (-196+273) / 5.2 * (20+273)
V2 = 378.07 / 1523.6
V2 = 0.248 L
Answer:
A. The volume of the object
Explanation:
First of all, it can only PROBABLY be A or D
But why is it only A?
- Mass = The amount of matter in an object (nothing related here)
- Volume = How much space is the object taking (super related here)
It's VOLUME here and not MASS here because:
- It it would be Mass, then the object size could be anything, but the liquid wouldn't move as much higher.
- But because it is Volume, it is taking space, which makes the liquid move
- If the Mass would be the answer, then it would be totally not related, because mass isn't related over here, it matters about size.
<h2>
Hence, A. The volume of the object </h2>
is your answer!!!!
Answer:
the ratio of the bubble’s volume at the top to its volume at the bottom is 1.019
Explanation:
given information
h = 0.2 m
= 1.01 x Pa
= + ρgh, ρ = 1000 kg/
= 1.01 x Pa + (1000 x 9.8 x 0.2) = 1,0296 x Pa
= = Pa
thus,
/ = 1.019