Answer:
4.05% probability that a randomly selected adult has an IQ greater than 123.4.
Step-by-step explanation:
Problems of normally distributed samples are solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this question, we have that:

Probability that a randomly selected adult has an IQ greater than 123.4.
This is 1 subtracted by the pvalue of Z when X = 123.4. So



has a pvalue of 0.9595
1 - 0.9595 = 0.0405
4.05% probability that a randomly selected adult has an IQ greater than 123.4.
Answer:
11.4 years
Step-by-step explanation:
We assume you want to know the time it takes for Lucy's investment of $1200 to have a value of $6400. The compound interest formula is good for finding that.
FV = P(1 +r/n)^(nt)
for principal P invested at rate r per year for t years, compounded n times per year. We want to find t such that ...
6400 = 1200(1 +0.15/4)^(4t)
16/3 = 1.0375^(4t) . . . . divide by 1200
log(16/3) = 4t·log(1.0375) . . . . take logarithms
t = log(16/3)/(4·log(1.0375)) ≈ 11.4
It will take about 11.4 years for Lucy's investment value to be $6400.
Answer:
Multiply by 2
Step-by-step explanation:
If we multiply 2x-6y=26 by 2, we get 4x-12y=52 and the x's cancel out, making it easier to solve for y, using the elimination process.
Hope this makes sense!
Answer:
2x²+2x
Step-by-step explanation:
you have f(x)= x+1 and g(x)= 2x
you must multiply the 2 polynomials
(1x·2x) +( 1·2x)
1·2=2 x^1·x^1=x²
2x²
1·2x=2x
This is what you’re looking for !