Answer:
In 1897, the British physicist J. J. Thomson (1856–1940) proved that atoms were not the most basic form of matter. He demonstrated that cathode rays could be deflected, or bent, by magnetic or electric fields, which indicated that cathode rays consist of charged particles (Figure 2.2.2 ). More important, by measuring the extent of the deflection of the cathode rays in magnetic or electric fields of various strengths, Thomson was able to calculate the mass-to-charge ratio of the particles. These particles were emitted by the negatively charged cathode and repelled by the negative terminal of an electric field. Because like charges repel each other and opposite charges attract, Thomson concluded that the particles had a net negative charge; these particles are now called electrons. Most relevant to the field of chemistry, Thomson found that the mass-to-charge ratio of cathode rays is independent of the nature of the metal electrodes or the gas, which suggested that electrons were fundamental components of all atoms.
Explanation:
Answer:
4 is the answer
Explanation:
i am not sure for this question
Answer:
Bohr thought that electrons orbited the nucleus in circular paths; whereas in the modern view atomic electron structure is more like 3D standing waves. Bohr built upon Rutherford's model of the atom. ... He believed that electrons moved around the nucleus in circular orbits with quantised potential and kinetic energies.
Explanation:
2.392 hectoliters = 239.2 liters. 1 hectoliter = 100 liters.
Molarity can be defined as the number of moles of solute in 1 L solution.
Molarity of Na₂SO₄ solution - 0.200 M
this means there are 0.200 moles in 1 L solution
Molar mass of Na₂SO₄ - 142 g/mol
therefore mass of Na₂SO₄ in 1.00 L - 0.200 mol x 142 g/mol = 28.4 g
a mass of 28.4 g of Na₂SO₄ is present in 1.00 L