<span>M(NO3)2 ==> [M2+] + 2 [NO3-]
0.202 M ==> 0.202 M
M(OH)2 ==> [M2+] + 2[OH-]
5.05*10^-18 ===> s + [2s]^2
5.05*10^-18 ===> 0.202 + [2s]^2
5.05*10^-18 = 0.202 * 4s^2
4s^2 = 25*10^-18
s^2 = 6.25*10^-18
s = 2.5*10^-9
So, the solubility is 2.5*10^-9</span>
Answer:
5.37 × 10⁻⁴ mol/L
Explanation:
<em>A chemist makes 660. mL of magnesium fluoride working solution by adding distilled water to 230. mL of a 0.00154 mol/L stock solution of magnesium fluoride in water. Calculate the concentration of the chemist's working solution. Round your answer to 3 significant digits.</em>
Step 1: Given data
- Initial concentration (C₁): 0.00154 mol/L
- Initial volume (V₁): 230. mL
- Final concentration (C₂): ?
- Final volume (V₂): 660. mL
Step 2: Calculate the concentration of the final solution
We want to prepare a dilute solution from a concentrated one. We can calculate the concentration of the final solution using the dilution rule.
C₁ × V₁ = C₂ × V₂
C₂ = C₁ × V₁ / V₂
C₂ = 0.00154 mol/L × 230. mL / 660. mL = 5.37 × 10⁻⁴ mol/L
Answer:
No.D is the molecules that has trigonal pyramidal sape
Answer:
5.00 mol Mg
10.0 mol Cl
40.0 mol O
Explanation:
Step 1: Given data
Moles of Mg(ClO₄)₂: 5.00 mol
Step 2: Calculate the number of moles of Mg
The molar ratio of Mg(ClO₄)₂ to Mg is 1:1.
5.00 mol Mg(ClO₄)₂ × 1 mol Mg/1 mol Mg(ClO₄)₂ = 5.00 mol Mg
Step 3: Calculate the number of moles of Cl
The molar ratio of Mg(ClO₄)₂ to Cl is 1:2.
5.00 mol Mg(ClO₄)₂ × 2 mol Cl/1 mol Mg(ClO₄)₂ = 10.0 mol Cl
Step 4: Calculate the number of moles of O
The molar ratio of Mg(ClO₄)₂ to Cl is 1:8.
5.00 mol Mg(ClO₄)₂ × 8 mol O/1 mol Mg(ClO₄)₂ = 40.0 mol O