Answer:
a. 
b. 
Step-by-step explanation:
The initial value problem is given as:

Applying laplace transformation on the expression 
to get ![L[{y+y'} ]= L[{7 + \delta (t-3)}]](https://tex.z-dn.net/?f=L%5B%7By%2By%27%7D%20%5D%3D%20L%5B%7B7%20%2B%20%5Cdelta%20%28t-3%29%7D%5D)

Taking inverse of Laplace transformation
![y(t) = 7 L^{-1} [ \dfrac{1}{(s+1)}] + L^{-1} [\dfrac{e^{-3s}}{s+1}] \\ \\ y(t) = 7L^{-1} [\dfrac{(s+1)-s}{s(s+1)}] +L^{-1} [\dfrac{e^{-3s}}{s+1}] \\ \\ y(t) = 7L^{-1} [\dfrac{1}{s}-\dfrac{1}{s+1}] + L^{-1}[\dfrac{e^{-3s}}{s+1}] \\ \\ y(t) = 7 [1-e^{-t} ] + L^{-1} [\dfrac{e^{-3s}}{s+1}]](https://tex.z-dn.net/?f=y%28t%29%20%3D%207%20L%5E%7B-1%7D%20%5B%20%5Cdfrac%7B1%7D%7B%28s%2B1%29%7D%5D%20%2B%20L%5E%7B-1%7D%20%5B%5Cdfrac%7Be%5E%7B-3s%7D%7D%7Bs%2B1%7D%5D%20%5C%5C%20%5C%5C%20y%28t%29%20%3D%207L%5E%7B-1%7D%20%5B%5Cdfrac%7B%28s%2B1%29-s%7D%7Bs%28s%2B1%29%7D%5D%20%2BL%5E%7B-1%7D%20%5B%5Cdfrac%7Be%5E%7B-3s%7D%7D%7Bs%2B1%7D%5D%20%5C%5C%20%5C%5C%20y%28t%29%20%3D%207L%5E%7B-1%7D%20%5B%5Cdfrac%7B1%7D%7Bs%7D-%5Cdfrac%7B1%7D%7Bs%2B1%7D%5D%20%2B%20L%5E%7B-1%7D%5B%5Cdfrac%7Be%5E%7B-3s%7D%7D%7Bs%2B1%7D%5D%20%5C%5C%20%5C%5C%20y%28t%29%20%3D%207%20%5B1-e%5E%7B-t%7D%20%5D%20%2B%20L%5E%7B-1%7D%20%5B%5Cdfrac%7Be%5E%7B-3s%7D%7D%7Bs%2B1%7D%5D)
![L^{-1}[\dfrac{e^{-3s}}{s+1}]](https://tex.z-dn.net/?f=L%5E%7B-1%7D%5B%5Cdfrac%7Be%5E%7B-3s%7D%7D%7Bs%2B1%7D%5D)
![L^{-1}[\dfrac{1}{s+1}] = e^{-t} = f(t) \ then \ by \ second \ shifting \ theorem;](https://tex.z-dn.net/?f=L%5E%7B-1%7D%5B%5Cdfrac%7B1%7D%7Bs%2B1%7D%5D%20%3D%20e%5E%7B-t%7D%20%20%3D%20f%28t%29%20%5C%20then%20%5C%20by%20%5C%20second%20%5C%20shifting%20%5C%20theorem%3B)
![L^{-1}[\dfrac{e^{-3s}}{s+1}] = \left \{ {{f(t-3) \ \ \ t>3} \atop {0 \ \ \ \ \ \ \ \ \ t](https://tex.z-dn.net/?f=L%5E%7B-1%7D%5B%5Cdfrac%7Be%5E%7B-3s%7D%7D%7Bs%2B1%7D%5D%20%3D%20%5Cleft%20%5C%7B%20%7B%7Bf%28t-3%29%20%5C%20%5C%20%5C%20t%3E3%7D%20%5Catop%20%7B0%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%20%5C%20%5C%20%20%5C%20t%20%3C3%7D%7D%20%5C%20%5C%20%5C%20%20%5Cright.)
![L^{-1}[\dfrac{e^{-3s}}{s+1}] = \left \{ {{e^{(-t-3)} \ \ \ t>3} \atop {0 \ \ \ \ \ \ \ \ \ t](https://tex.z-dn.net/?f=L%5E%7B-1%7D%5B%5Cdfrac%7Be%5E%7B-3s%7D%7D%7Bs%2B1%7D%5D%20%3D%20%5Cleft%20%5C%7B%20%7B%7Be%5E%7B%28-t-3%29%7D%20%5C%20%5C%20%5C%20t%3E3%7D%20%5Catop%20%7B0%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%20%5C%20%5C%20%20%5C%20t%20%3C3%7D%7D%20%5C%20%5C%20%5C%20%20%5Cright.)

= 
Recall that:
![y(t) = 7 [1-e^{-t} ] + L^{-1} [\dfrac{e^{-3s}}{s+1}]](https://tex.z-dn.net/?f=y%28t%29%20%3D%207%20%5B1-e%5E%7B-t%7D%20%5D%20%2B%20L%5E%7B-1%7D%20%5B%5Cdfrac%7Be%5E%7B-3s%7D%7D%7Bs%2B1%7D%5D)
Then



The answer is A.) 500 Year books.
The profit they would gain from each year book would be $28 since each year book costs $7 to make and sells for $35. You would simply divide 14,000 by 28 to find how many books they would need to sell in order to get their investment back which would be 500 books.
Hope this helps.
The height of the wall from the question is 13.27ft
<h3 /><h3>Pythagoras theorem </h3>
The theorem states that the square of the longest side is equal to the sum of square of other two sides.
From the given question
Hypotenuse (ladder length) = 15ft
Adjacent = 7feet
Required
Height of the wall H
According to the theorem
15² = 7² + H²
H² = 225 - 49
H² = 176
H = 13.27feet
Hence the height of the wall from the question is 13.27ft
Learn more on pythagoras theorem here; brainly.com/question/343682
#SPJ1
Answer:
D
Step-by-step explanation:
-4 * -6 is -34
add 2 and you have -24
The answer is 3, if it is in square meters it must be a square therefore each side is the same length