Answer:
Step-by-step explanation:
Researchers measured the data speeds for a particular smartphone carrier at 50 airports.
The highest speed measured was 76.6 Mbps.
n= 50
X[bar]= 17.95
S= 23.39
a. What is the difference between the carrier's highest data speed and the mean of all 50 data speeds?
If the highest speed is 76.6 and the sample mean is 17.95, the difference is 76.6-17.95= 58.65 Mbps
b. How many standard deviations is that [the difference found in part (a)]?
To know how many standard deviations is the max value apart from the sample mean, you have to divide the difference between those two values by the standard deviation
Dif/S= 58.65/23.39= 2.507 ≅ 2.51 Standard deviations
c. Convert the carrier's highest data speed to a z score.
The value is X= 76.6
Using the formula Z= (X - μ)/ δ= (76.6 - 17.95)/ 23.39= 2.51
d. If we consider data speeds that convert to z scores between minus−2 and 2 to be neither significantly low nor significantly high, is the carrier's highest data speed significant?
The Z value corresponding to the highest data speed is 2.51, considerin that is greater than 2 you can assume that it is significant.
I hope it helps!
A quadratic in vertex form can be represented as
a represents reflection over the x-axis, and a vertical stretch or compress
- is reflection and a fraction (1/2) represents a compression.
-h represents a shift of that many units to the right (-2 shifts to the
right two units)
k represents a shift up or down (-2 is shifting down 2 units_
Reflected over the x-axis, Vertically compressed by a factor of 1/2, shifted 2 units to the right, and shifted 2 units down
Answer:
If AB is a tangent to the circle, the triangle ABO is right angled, as the angle where a tangent meets the circumference is always 90 degrees.
We also know that Pythogoras' theorem only holds for right angled triangles.
The hypotenuse is 12 + 8 as 12 is the radius so is 20.
16^2+12^2 = 256 + 144 = 400 = 20^2 so AB must be tangent.