<span>get their dot product, if the dot product is 0, then they're orthogonal (perpendicular).
also keep in mind that, if two vectors bear the same slope, namely <a,b> and <c,d> and the simplified slope b/a is the same value as d/c, then they're parallel vectors.</span>
Answer:
Step-by-step explanation:
⁷hc8
Answer:
3
+ 11a³ - 7a² + 18a - 18
Step-by-step explanation:
<u>When multiplying with two brackets, you need to multiply the three terms, (a²), (4a) and (-6) from the first bracket to all the terms in the second brackets, (3a²), (-a) and (3) individually. I have put each multiplied term in a bracket so it is easier.</u>
(a² + 4a - 6) × (3a² - a + 3) =
(a² × <em>3a²</em>) + {a² × <em>(-a)</em>} + (a² × <em>3</em>) + (4a × <em>3a²</em>) + {4a × <em>(-a)</em>} + (4a × <em>3</em>) + {(-6) × <em>a²</em>) + {(-6) × <em>(-a)</em>} + {(-6) × <em>3</em>}
<u>Now we can evaluate the terms in the brackets. </u>
(a² × 3a²) + {a² × (-a)} + (a² × 3) + (4a × 3a²) + {4a × (-a)} + (4a × 3) + {(-6) × a²) + {(-6) × (-a)} + {(-6) × 3} =
3
+ (-a³) + 3a² + 12a³ + (-4a²) + 12a + (-6a²) + 6a + (-18)
<u>We can open the brackets now. One plus and one minus makes a minus. </u>
3
+ (-a³) + 3a² + 12a³ + (-4a²) + 12a + (-6a²) + 6a + (-18) =
3
-a³ + 3a² + 12a³ -4a² + 12a -6a² + 6a -18
<u>Evaluate like terms.</u>
3
-a³ + 3a² + 12a³ -4a² + 12a -6a² + 6a -18 = 3
+ 11a³ - 7a² + 18a - 18
Answer:
there are 3 red fish
Step-by-step explanation:
1:5
_:15
5 times 3 =15
so 1 times 3 =3
Answer:
find where they intersect on the graph or find each line's individual equation and set them equivalent to eachother. x=2