It's 'D'. You need to know the time in order to calculate power.
B. accelerates in the direction of the force. this is because the force is now unbalanced, causing the object to move in that direction. it's like pushing a pen off the table. you applied force in that direction and since the pen doesn't have enough inertia to withstand your unbalanced force, it rolls off the table.
Answer:
The current that flows through the lamp is 0.5 A.
Explanation:
A lamp functions like a resistor and the real power absorbed by a resistor is given by the product of the voltage drop across it's terminals and the current that flows through it. If we wish to find the current that this lamp draws we should divide the wattage given (60 W) by the voltage drop provided (120 V). We then have:
i = P/V = 60/120 = 0.5 A.
Answer:
λ_A = 700 nm
, m_B = m_a 2
Explanation:
The expression that describes the diffraction phenomenon is
a sin θ = m λ
where a is the width of the slit, lam the wavelength and m an integer that writes the order of diffraction
a) They tell us that now lal_ A m = 1
a sin θ = λ_A
coincidentally_be m = 2
a sin θ = m λ_b
as the two match we can match
λ _A = 2 λ _B
λ_A = 2 350 nm
λ_A = 700 nm
b)
For lam_B
a sin λ_A = m_B λ_B
For lam_A
a sin θ_A = m_ λ_ A
to match they must have the same angle, so we can equal
m_B λ_B = m_A λ_A
m_B = m_A λ_A / λ_B
m_b = m_a 700/350
m_B = m_a 2
Answer:
Average Velocity = - 1.22 cm/s = - 0.0122 m/s
Explanation:
The average velocity of an object is defined as the ratio of the total distance traveled by the object to the total time taken by the object to cover the distance. Therefore, the average velocity of an object can be found by the following formula:
Average Velocity = Total Distance Covered/Total Time Taken
Average Velocity = (Final Position - Initial Position)/Total Time Taken
Average Velocity = (3.7 cm - 6.5 cm)/(2.3 s)
Average Velocity = (- 2.8 cm)/(2.3 s)
<u>Average Velocity = - 1.22 cm/s = - 0.0122 m/s</u>
here, the negative sign indicates the direction of the velocity or the movement of the object is leftwards or towards the origin approaching from right.