1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ryzh [129]
3 years ago
8

A large balloon of mass 210 kg is filled with helium gas until its volume is 329 m3. Assume the density of air is 1.29 kg/m3 and

the density of helium is 0.179 kg/m3. (a) Draw a force diagram for the balloon. (Submit a file with a maximum size of 1 MB.) (b) Calculate the buoyant force acting on the balloon. (Give your answer to at least three significant figures.) 4159 N (c) Find the net force on the balloon. 1524 N Determine whether the balloon will rise or fall after it is released. The balloon will (d) What maximum additional mass can the balloon support in equilibrium? 155 kg (e) What happens to the balloon if the mass of the load is less than the value calculated in part (d)? The balloon and its load will remain stationary. The balloon and its load will accelerate downward. The balloon and its load will accelerate upward. (f) What limits the height to which the balloon can rise?

Physics
1 answer:
Nastasia [14]3 years ago
4 0

(a) See figure in attachment (please note that the image should be rotated by 90 degrees clockwise)

There are only two forces acting on the balloon, if we neglect air resistance:

- The weight of the balloon, labelled with W, whose magnitude is

W=mg

where m is the mass of the balloon+the helium gas inside and g is the acceleration due to gravity, and whose direction is downward

- The Buoyant force, labelled with B, whose magnitude is

B=\rho_a V g

where \rho_a is the air density, V is the volume of the balloon and g the acceleration due to gravity, and where the direction is upward

(b) 4159 N

The buoyant force is given by

B=\rho_a V g

where \rho_a is the air density, V is the volume of the balloon and g the acceleration due to gravity.

In this case we have

\rho_a = 1.29 kg/m^3 is the air density

V=329 m^3 is the volume of the balloon

g = 9.8 m/s^2 is the acceleration due to gravity

So the buoyant force is

B=(1.29 kg/m^3)(329 m^3)(9.8 m/s^2)=4159 N

(c) 1524 N

The mass of the helium gas inside the balloon is

m_h=\rho_h V=(0.179 kg/m^3)(329 m^3)=59 kg

where \rho_h is the helium density; so we the total mass of the balloon+helium gas inside is

m=m_h+m_b=59 kg+210 kg=269 kg

So now we can find the weight of the balloon:

W=mg=(269 kg)(9.8 m/s^2)=2635 N

And so, the net force on the balloon is

F=B-W=4159 N-2635 N=1524 N

(d) The balloon will rise

Explanation: we said that there are only two forces acting on the balloon: the buoyant force, upward, and the weight, downward. Since the magnitude of the buoyant force is larger than the magnitude of the weigth, this means that the net force on the balloon points upward, so according to Newton's second law, the balloon will have an acceleration pointing upward, so it will rise.

(e) 155 kg

The maximum additional mass that the balloon can support in equilibrium can be found by requiring that the buoyant force is equal to the new weight of the balloon:

W'=(m'+m)g=B

where m' is the additional mass. Re-arranging the equation for m', we find

m'=\frac{B}{g}-m=\frac{4159 N}{9.8 m/s^2}-269 kg=155 kg

(f) The balloon and its load will accelerate upward.

If the mass of the load is less than the value calculated in the previous part (155 kg), the balloon will accelerate upward, because the buoyant force will still be larger than the weight of the balloon, so the net force will still be pointing upward.

(g) The decrease in air density as the altitude increases

As the balloon rises and goes higher, the density of the air in the atmosphere decreases. As a result, the buoyant force that pushes the balloon upward will decrease, according to the formula

B=\rho_a V g

So, at a certain altitude h, the buoyant force will be no longer greater than the weight of the balloon, therefore the net force will become zero and the balloon will no longer rise.

You might be interested in
A typical male sprinter can maintain his maximum acceleration for 2.0 s, and his maximum speed is 10 m/s. After he reaches this
baherus [9]
20 characters longer later and woah
5 0
3 years ago
Magnetic fields go from the north poles of magnets to the south poles of magnets.<br> true or false
Novay_Z [31]

The Answer is true, the saying opposites attract are true for magnets when poles match though they repel.

7 0
3 years ago
Plzzzz help the question that are selected in the picture r not correct PLZZ help PLZZ give the answer I will mark u the brainli
lbvjy [14]

Answer:

D for the first one and A for the second.

Explanation:

Hurricanes are usually caused by warmer waters.

Wind is created due to the movement of air because of the temperatures.

3 0
3 years ago
A 45.0-kg sample of ice is at 0.00°C. How much heat is needed to melt it? For water, Lf=334 kJ/kg and Lv=2257 kJ/kg 
Aleonysh [2.5K]

Heat required to change the phase of ice is given by

Q = m* L

here

m = mass of ice

L = latent heat of fusion

now we have

m = 45 kg

L = 334 KJ/kg

now by using above formula

Q = 45 * 334 * 10^3

Q = 1.5 * 10^7 J

In KJ we can convert this as

Q = 1.5 * 10^4 kJ

so the correct answer is D option

7 0
2 years ago
Read 2 more answers
4. Going back to the dog whistle in question 1, what is the minimum riding speed needed to be able to hear the whistle? Remember
jeyben [28]

Answer:

The minimum riding speed relative to the whistle (stationary) to be able to hear the sound at 21.0 kHz frequency is 15.7  m/s

Explanation:

The Doppler shift equation is given as follows;

f' = \dfrac{v - v_o}{v + v_s} \times f

Where:

f' = Required observed frequency = 20.0 kHz

f = Real frequency = 21.0 kHz

v = Sound wave velocity = 330 m/s

v_o = Observer velocity = X m/s

v_s = Source velocity = 0 m/s (Assuming the source is stationary)

Which gives;

20 = \dfrac{330- v_o}{330+0} \times 21

330 - v_o = (20/21)*330

v_o = 330 - (20/21)*330 = 15.7 m/s

The minimum riding speed relative to the whistle (stationary) to be able to hear the sound at 21.0 kHz frequency = 15.7  m/s.

8 0
2 years ago
Other questions:
  • Suppose a 0.04-kg car traveling at 2.00 m/s can barely break an egg. What is the min
    7·1 answer
  • An object that weighs 2.450 N is attached to an ideal massless spring and undergoes simple harmonic oscillations with a period o
    8·1 answer
  • What did the asymptote say to the removable discontinuity worksheet answers?
    9·1 answer
  • Quincia is traveling at a speed of 35 m/s sees a squirrel run across the road in front of her and slams on the brakes. Four seco
    13·1 answer
  • Find the ratio of the new/old periods of a pendulum if the pendulum were transported from earth to the moon, where the accelerat
    7·1 answer
  • Charge Q is distributed on a metallic sphere of radius a. What is the electric field at a point a distance r from the center of
    5·1 answer
  • A gas-turbine power plant operates on the simple Brayton cycle between the pressure limits of 100 and 1600 kPa. The working flui
    9·1 answer
  • What direction do s waves move in
    10·1 answer
  • Which of the following are likely to form a covalent bond?
    15·2 answers
  • After rubbing a balloon on your shirt, your hair sticks up when the balloon is near your head. Explain how tiny particles on you
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!