1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ryzh [129]
3 years ago
8

A large balloon of mass 210 kg is filled with helium gas until its volume is 329 m3. Assume the density of air is 1.29 kg/m3 and

the density of helium is 0.179 kg/m3. (a) Draw a force diagram for the balloon. (Submit a file with a maximum size of 1 MB.) (b) Calculate the buoyant force acting on the balloon. (Give your answer to at least three significant figures.) 4159 N (c) Find the net force on the balloon. 1524 N Determine whether the balloon will rise or fall after it is released. The balloon will (d) What maximum additional mass can the balloon support in equilibrium? 155 kg (e) What happens to the balloon if the mass of the load is less than the value calculated in part (d)? The balloon and its load will remain stationary. The balloon and its load will accelerate downward. The balloon and its load will accelerate upward. (f) What limits the height to which the balloon can rise?

Physics
1 answer:
Nastasia [14]3 years ago
4 0

(a) See figure in attachment (please note that the image should be rotated by 90 degrees clockwise)

There are only two forces acting on the balloon, if we neglect air resistance:

- The weight of the balloon, labelled with W, whose magnitude is

W=mg

where m is the mass of the balloon+the helium gas inside and g is the acceleration due to gravity, and whose direction is downward

- The Buoyant force, labelled with B, whose magnitude is

B=\rho_a V g

where \rho_a is the air density, V is the volume of the balloon and g the acceleration due to gravity, and where the direction is upward

(b) 4159 N

The buoyant force is given by

B=\rho_a V g

where \rho_a is the air density, V is the volume of the balloon and g the acceleration due to gravity.

In this case we have

\rho_a = 1.29 kg/m^3 is the air density

V=329 m^3 is the volume of the balloon

g = 9.8 m/s^2 is the acceleration due to gravity

So the buoyant force is

B=(1.29 kg/m^3)(329 m^3)(9.8 m/s^2)=4159 N

(c) 1524 N

The mass of the helium gas inside the balloon is

m_h=\rho_h V=(0.179 kg/m^3)(329 m^3)=59 kg

where \rho_h is the helium density; so we the total mass of the balloon+helium gas inside is

m=m_h+m_b=59 kg+210 kg=269 kg

So now we can find the weight of the balloon:

W=mg=(269 kg)(9.8 m/s^2)=2635 N

And so, the net force on the balloon is

F=B-W=4159 N-2635 N=1524 N

(d) The balloon will rise

Explanation: we said that there are only two forces acting on the balloon: the buoyant force, upward, and the weight, downward. Since the magnitude of the buoyant force is larger than the magnitude of the weigth, this means that the net force on the balloon points upward, so according to Newton's second law, the balloon will have an acceleration pointing upward, so it will rise.

(e) 155 kg

The maximum additional mass that the balloon can support in equilibrium can be found by requiring that the buoyant force is equal to the new weight of the balloon:

W'=(m'+m)g=B

where m' is the additional mass. Re-arranging the equation for m', we find

m'=\frac{B}{g}-m=\frac{4159 N}{9.8 m/s^2}-269 kg=155 kg

(f) The balloon and its load will accelerate upward.

If the mass of the load is less than the value calculated in the previous part (155 kg), the balloon will accelerate upward, because the buoyant force will still be larger than the weight of the balloon, so the net force will still be pointing upward.

(g) The decrease in air density as the altitude increases

As the balloon rises and goes higher, the density of the air in the atmosphere decreases. As a result, the buoyant force that pushes the balloon upward will decrease, according to the formula

B=\rho_a V g

So, at a certain altitude h, the buoyant force will be no longer greater than the weight of the balloon, therefore the net force will become zero and the balloon will no longer rise.

You might be interested in
When two objects of different masses, different temperatures, and different sizes are placed in thermal contact, energy will alw
denpristay [2]

Answer:

a) from the hotter object to the cooler object

Explanation:

temperature moves by conduction,  which is associated with the movement of  atoms or molecules and the always move from hight temperatures to lower temperatures to attain thermal equilinrium of the system.

so when two objects are placed together and have different temperatures then the system is not in thermal equilibrium and to attain it, temperature can only move to coller object and not from the coller object according to thermodynamics.

6 0
3 years ago
A small car with mass of 0.800 kg travels at a constant speed
Alexandra [31]

Answer:

The equation of equilibrium at the top of the vertical circle is:

\Sigma F = - N - m\cdot g = - m \cdot \frac{v^{2}}{R}

The speed experimented by the car is:

\frac{N}{m}+g=\frac{v^{2}}{R}

v = \sqrt{R\cdot (\frac{N}{m}+g) }

v = \sqrt{(5\,m)\cdot (\frac{6\,N}{0.8\,kg} +9.807\,\frac{kg}{m^{2}} )}

v\approx 9.302\,\frac{m}{s}

The equation of equilibrium at the bottom of the vertical circle is:

\Sigma F = N - m\cdot g = m \cdot \frac{v^{2}}{R}

The normal force on the car when it is at the bottom of the track is:

N=m\cdot (\frac{v^{2}}{R}+g )

N = (0.8\,kg)\cdot \left(\frac{(9.302\,\frac{m}{s} )^{2}}{5\,m}+ 9.807\,\frac{m}{s^{2}} \right)

N=21.690\,N

7 0
2 years ago
what happens to the period of revolution for the planets as they move farther away in position from the sun
Marina CMI [18]
It increases. Mercury takes 88 days to orbit the sun once. The Earth takes a year. Pluto takes 248 years.
3 0
3 years ago
Can anyone help? <br> Please and thank you
Juliette [100K]

Kinetic energy is calculated as such: KE=\frac{1}{2} mv^{2} | therefore, KE=0.913598 J

7 0
3 years ago
Why do we say that a baseball falls toward Earth, and not Earth toward the baseball?
mezya [45]
Probably because the earth is stationary rotating on its axis whereas the baseball is the one doing all of the movement after being thrown
4 0
3 years ago
Other questions:
  • 1. A container has a mass of 36 kg. How much does the container weigh?
    11·2 answers
  • Please help me with these 3 questions!!
    6·1 answer
  • Suppose that the electric potential outside a living cell is higher than that inside the cell by 0.063 V. How much work is done
    13·1 answer
  • What happens when the temperature of an object decreases
    13·1 answer
  • This design enabled them to control for several factors. The total area of the patch plus the corridor, or the patch plus the wi
    8·1 answer
  • 5N of force is applied to move a large nail a distance of 10 cm from an electromagnet on a frictionless table. The nail is then
    15·1 answer
  • Which of the following is a result of the transfer of energy?
    9·2 answers
  • Which statement best describes how resources are distributed? ​
    6·1 answer
  • Calculate the height from from which a body is released from rest if its velocity just before hitting the ground is30m\s
    13·1 answer
  • 8th grade science help help
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!