The experimental probability that only 2 of 4 children in a family are boys is <u>50%</u>.
<h3>What is experimental probability?</h3>
Experimental probability refers to the chance of an expected success being achieved in a series of experiments conducted.
Experimental probability is the number of times that the expected success occurs as a fraction of the total number of times the experiment was conducted.
Like all probabilities, the experimental probability is based on the likelihood that what the experimenter expects is achieved.
Expected number of boys = 2
The number of children in the family = 4
Experimental probability = 50% (2/4 x 100)
Thus, we can conclude, based on the experimental probability, that <u>50%</u> (or 2) of the 4 children in the family are boys.
Learn more about experimental probabilities at brainly.com/question/8652467
#SPJ1
Answer:
8.2% of 500 = 41
Step-by-step explanation:
Set up the equation. On a piece of paper, write the dividend (number being divided) on the right, under the division symbol, and the divisor (number doing the division) to the left on the outside. ...
Divide the first digit. ...
Divide the first two digits. ...
Enter the first digit of the quotient.
The acceleration of the particle is given by the formula mentioned below:

Differentiate the position vector with respect to t.
![\begin{gathered} \frac{ds(t)}{dt}=\frac{d}{dt}\sqrt[]{\mleft(t^3+1\mright)} \\ =-\frac{1}{2}(t^3+1)^{-\frac{1}{2}}\times3t^2 \\ =\frac{3}{2}\frac{t^2}{\sqrt{(t^3+1)}} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20%5Cfrac%7Bds%28t%29%7D%7Bdt%7D%3D%5Cfrac%7Bd%7D%7Bdt%7D%5Csqrt%5B%5D%7B%5Cmleft%28t%5E3%2B1%5Cmright%29%7D%20%5C%5C%20%3D-%5Cfrac%7B1%7D%7B2%7D%28t%5E3%2B1%29%5E%7B-%5Cfrac%7B1%7D%7B2%7D%7D%5Ctimes3t%5E2%20%5C%5C%20%3D%5Cfrac%7B3%7D%7B2%7D%5Cfrac%7Bt%5E2%7D%7B%5Csqrt%7B%28t%5E3%2B1%29%7D%7D%20%5Cend%7Bgathered%7D)
Differentiate both sides of the obtained equation with respect to t.
![\begin{gathered} \frac{d^2s(t)}{dx^2}=\frac{3}{2}(\frac{2t}{\sqrt[]{(t^3+1)}}+t^2(-\frac{3}{2})\times\frac{1}{(t^3+1)^{\frac{3}{2}}}) \\ =\frac{3t}{\sqrt[]{(t^3+1)}}-\frac{9}{4}\frac{t^2}{(t^3+1)^{\frac{3}{2}}} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20%5Cfrac%7Bd%5E2s%28t%29%7D%7Bdx%5E2%7D%3D%5Cfrac%7B3%7D%7B2%7D%28%5Cfrac%7B2t%7D%7B%5Csqrt%5B%5D%7B%28t%5E3%2B1%29%7D%7D%2Bt%5E2%28-%5Cfrac%7B3%7D%7B2%7D%29%5Ctimes%5Cfrac%7B1%7D%7B%28t%5E3%2B1%29%5E%7B%5Cfrac%7B3%7D%7B2%7D%7D%7D%29%20%5C%5C%20%3D%5Cfrac%7B3t%7D%7B%5Csqrt%5B%5D%7B%28t%5E3%2B1%29%7D%7D-%5Cfrac%7B9%7D%7B4%7D%5Cfrac%7Bt%5E2%7D%7B%28t%5E3%2B1%29%5E%7B%5Cfrac%7B3%7D%7B2%7D%7D%7D%20%5Cend%7Bgathered%7D)
Substitute t=2 in the above equation to obtain the acceleration of the particle at 2 seconds.
![\begin{gathered} a(t=1)=\frac{3}{\sqrt[]{2}}-\frac{9}{4\times2^{\frac{3}{2}}} \\ =1.32ft/sec^2 \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20a%28t%3D1%29%3D%5Cfrac%7B3%7D%7B%5Csqrt%5B%5D%7B2%7D%7D-%5Cfrac%7B9%7D%7B4%5Ctimes2%5E%7B%5Cfrac%7B3%7D%7B2%7D%7D%7D%20%5C%5C%20%3D1.32ft%2Fsec%5E2%20%5Cend%7Bgathered%7D)
The initial position is obtained at t=0. Substitute t=0 in the given position function.
Answer:
<h2>Model B</h2>
Step-by-step explanation:
The model needs to show 1.8 because 2 x 0.9 = 1.8. Model B is the only model that shows this.
<em>Hope this helps</em>
Answer:
The answer is 200 cm³
Step-by-step explanation: