1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mariarad [96]
2 years ago
5

Adults who are on their feet alot for work will often soak their swollen ankles in a pail of hot water with Epsom salt dissolved

in it what type of solution is the foot soaking in.
1. Hypertonic
2. Hypotonic
3. Isotonic
Biology
1 answer:
Tanya [424]2 years ago
6 0

The type of solution formed is hypertonic.

<h3>What are hypertonic solutions?</h3>

Hypertonic solutions are solutions with higher dissolved solutes as compared to the sap of the cells suspended in them.

Epsom salt is made up largely of magnesium sulfate. Thus, a solution formed by dissolving Epsom salt is water will have more magnesium in it than the cells of the part of the body soaked in it.  

Hence, such a solution is hypertonic.

More on hypertonic solutions can be found here: brainly.com/question/13886457

#SPJ1

You might be interested in
I GIVE OUT BRAINLIEST
gladu [14]
Humans obtain nitrogen by eating other organisms.
3 0
3 years ago
Read 2 more answers
_____are needed for sexual reproduction.<br><br> Gametes<br> Pollen<br> Spores<br> Cells
muminat

Answer:

Gametes

Explanation:

Gametes are sex cells.

8 0
3 years ago
Convection currents are powered by:
Elena L [17]
The answer is a. heat
6 0
3 years ago
Can exoskeletons break?
Harman [31]
If a large animal such as a human being had a thin light exoskeleton, there would be several problems. Since the exoskeleton would not be able to hold its shape, it would be difficult to keep the vital organs protected and the organism would be subject to damaging levels of stress just by moving around. They are not strong enough to hold organs or hold its shape.
5 0
3 years ago
A description of the role of sensory organs and the types of<br> stimuli the organs receive
bogdanovich [222]

Tongue

The four intrinsic tongue muscles work together to give the tongue great flexibility.

The nervous system must receive and process information about the world outside in order to react, communicate, and keep the body healthy and safe. Much of this information comes through the sensory organs: the eyes, ears, nose, tongue, and skin. Specialized cells and tissues within these organs receive raw stimuli and translate them into signals the nervous system can use. Nerves relay the signals to the brain, which interprets them as sight (vision), sound (hearing), smell (olfaction), taste (gustation), and touch (tactile perception).

1. The Eyes Translate Light into Image Signals for the Brain to Process

The eyes sit in the orbits of the skull, protected by bone and fat. The white part of the eye is the sclera. It protects interior structures and surrounds a circular portal formed by the cornea, iris, and pupil. The cornea is transparent to allow light to enter the eye, and curved to direct it through the pupil behind it. The pupil is actually an opening in the colored disk of the iris. The iris dilates or constricts, adjusting how much light passes through the pupil and onto the lens. The curved lens then focuses the image onto the retina, the eye’s interior layer. The retina is a delicate membrane of nervous tissue containing photoreceptor cells. These cells, the rods and cones, translate light into nervous signals. The optic nerve carries the signals from the eye to the brain, which interprets them to form visual images.

2. The Ear Uses Bones and Fluid to Transform Sound Waves into Sound Signals

Music, laughter, car honks — all reach the ears as sound waves in the air. The outer ear funnels the waves down the ear canal (the external acoustic meatus) to the tympanic membrane (the “ear drum”). The sound waves beat against the tympanic membrane, creating mechanical vibrations in the membrane. The tympanic membrane transfers these vibrations to three small bones, known as auditory ossicles, found in the air-filled cavity of the middle ear. These bones – the malleus, incus, and stapes – carry the vibrations and knock against the opening to the inner ear. The inner ear consists of fluid-filled canals, including the spiral-shaped cochlea. As the ossicles pound away, specialized hair cells in the cochlea detect pressure waves in the fluid. They activate nervous receptors, sending signals through the cochlear nerve toward the brain, which interprets the signals as sounds.

3. Specialized Receptors in the Skin Send Touch Signals to the Brain

Skin consists of three major tissue layers: the outer epidermis, middle dermis, and inner hypodermis. Specialized receptor cells within these layers detect tactile sensations and relay signals through peripheral nerves toward the brain. The presence and location of the different types of receptors make certain body parts more sensitive. Merkel cells, for example, are found in the lower epidermis of lips, hands, and external genitalia. Meissner corpuscles are found in the upper dermis of hairless skin — fingertips, nipples, the soles of the feet. Both of these receptors detect touch, pressure, and vibration. Other touch receptors include Pacinian corpuscles, which also register pressure and vibration, and the free endings of specialized nerves that feel pain, itch, and tickle.

4. Olfaction: Chemicals in the Air Stimulate Signals the Brain Interprets as Smells

The sense of smell is called olfaction. It starts with specialized nerve receptors located on hairlike cilia in the epithelium at the top of the nasal cavity. When we sniff or inhale through the nose, some chemicals in the air bind to these receptors. That triggers a signal that travels up a nerve fiber, through the epithelium and the skull bone above, to the olfactory bulbs. The olfactory bulbs contain neuron cell bodies that transmit information along the cranial nerves, which are extensions of the olfactory bulbs. They send the signal down the olfactory nerves, toward the olfactory area of the cerebral cortex.

5. Home of the Taste Buds: The Tongue Is the Principal Organ of Gustation

What are all those small bumps on the top of the tongue? They’re called papillae. Many of them, including circumvallate papillae and fungiform papillae, contain taste buds. When we eat, chemicals from food enter the papillae and reach the taste buds. These chemicals (or tastants) stimulate specialized gustatory cells inside the taste buds, activating nervous receptors. The receptors send signals to fibers of the facial, glossopharyngeal, and vagus nerves. Those nerves carry the signals to the medulla oblongata, which relays them to the thalamus and cerebral cortex of the brain.

4 0
3 years ago
Other questions:
  • A 14-year-old boy has been diagnosed with infectious mononucleosis. Which of the following pathophysiologic phenomenon is most r
    14·1 answer
  • What would your body be like if you did not have any bones
    15·2 answers
  • Which of the following are effective strategies that are used in biotechnology to solve a problem?
    14·1 answer
  • Imagine that you are performing a cross involving seed color in garden pea plants. what traits would you expect to observe in th
    10·1 answer
  • Which of the labeled structures in the diagram allows bacteria to infect organisms under harsh conditions, such as in the acidic
    9·2 answers
  • What is the difference between a theory and a
    10·1 answer
  • Why are enzymes considered catalysts?
    7·2 answers
  • Can someone help me I need help quick like asap please and thank you
    12·1 answer
  • Can someone help me with this please.​
    7·1 answer
  • Which of these is the most serious impact to an ecosystem after a tornado?
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!