1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
umka2103 [35]
2 years ago
11

NEED HELP ASAP WILL MARK BRAINLIEST!

Mathematics
2 answers:
AlekseyPX2 years ago
7 0

Answer:

\boxed {1)log_{b}(75) = 4.317}

\boxed {2)ln(20) = 2.9957}

Step-by-step explanation:

\textsf {Question l :}

\longrightarrow \mathsf {log_{b}(3) = 1.099}

\longrightarrow \mathsf {log_{b}(5) = 1.609}

\textsf {Identities applied :}

\boxed {log(ab) = loga + logb}

\boxed {log(a)^{x} = xloga}

\textsf {We can rewrite the problem as :}

\longrightarrow \mathsf {log_{b}(75)}

\longrightarrow \mathsf {log_{b}(25 \times 3)}

\longrightarrow \mathsf {log_{b}(5^{2} \times 3)}

\longrightarrow \mathsf {log_{b}(5)^{2} + log_{b}(3)}

\longrightarrow \mathsf {2log_{b}(5) + log_{b}(3)}

\textsf {Now, substitute the values :}

\longrightarrow \mathsf {2(1.609) + (1.099)}

\longrightarrow \mathsf {3.218 + 1.099}

\longrightarrow \mathsf {4.317}

\boxed {log_{b}(75) = 4.317}

\textsf {Question ll :}

\longrightarrow \mathsf {ln(4) = 1.3863}

\longrightarrow \mathsf {ln(5) = 1.6094}

\textsf {Rewriting the problem :}

\longrightarrow \mathsf {ln(20)}

\longrightarrow \mathsf {ln(4 \times 5)}

\longrightarrow \mathsf {ln(4) + ln(5)}

\longrightarrow \mathsf {1.3863 + 1.6094}

\longrightarrow \mathsf {2.9957}

\boxed {ln(20) = 2.9957}

quester [9]2 years ago
5 0

Answer:

\sf \log_b(75)=4.317

\sf \ln (20)=2.9957

Step-by-step explanation:

<u>Question 1</u>

Given:

  \sf \log_b(3)=1.099

  \sf \log_b(5)=1.609

To evaluate \sf \log_b(75),  replace 75 with (5 × 5 × 3):

\implies \sf \log_b(5 \cdot 5 \cdot 3)

\textsf{Apply the Product log law}: \quad \log_axy=\log_ax + \log_ay

\implies \sf \log_b5+\log_b5+\log_b3

Substitute the given values to solve:

\implies \sf 1.609 + 1.609 + 1.099=4.317

<u>Question 2</u>

Given:

  \sf \ln(4)=1.3863

  \sf \ln(5)=1.6094

To evaluate ln(20) replace 20 with (4 × 5):

\implies \sf \ln (4 \cdot  5)

\textsf{Apply the Product log law}: \quad \ln xy=\ln x + \ln y

<em />\implies \sf \ln (4)+\ln (5)

Substitute the given values to solve:

\implies \sf 1.3863+1.6094=2.9957

You might be interested in
Nathan is making a beaded bracelet. for for every 5 red beads and there are 3 white
Anni [7]
10 : 6


The ratio is already in lowest terms so I found an equivalent ratio by multiplying both terms by 2.
4 0
3 years ago
Write an equation of a line in slope-intercept form given slope= 6 and passes through the point (-3,7).
Jobisdone [24]

Use formula y = mx+ b  Y is your point y in the pair: 7 M is slope : 6 X is your x in the pairs : -3   7 = 6 (-3) + b 7 = -18 + b 7+ 18 = b  25= b   So , it will be  Y= 6x + 25

8 0
3 years ago
2
kozerog [31]

Answer:

True

Step-by-step explanation:

3 0
3 years ago
A line containing the points (4,4) and (8,9)
strojnjashka [21]

Answer:

im assuming slope : 5/4 is slope

Step-by-step explanation:

the formula (y₂ - y₁) / (x₂ - x₁) is how you get slope. plug stuff in and you get (9 - 4) / (8 - 4) and thats 5/4

3 0
3 years ago
Read 2 more answers
Given the relationship x2 + 3y2 =12, with y &gt; 0 and dx, dt = 2 units/min., find the value of dy, dt at the instant y = 1 unit
matrenka [14]
\bf x^2+3y^2=12\implies \stackrel{chain~rule}{2x\cfrac{dx}{dt}}+3 \stackrel{chain~rule}{\left(2y\cfrac{dy}{dt}\right)}=0&#10;\\\\\\&#10;2x\cfrac{dx}{dt}+6y\cfrac{dy}{dt}=0&#10;\implies &#10;6y\cfrac{dy}{dt}=-2x\cfrac{dx}{dt}\implies \cfrac{dy}{dt}=\cfrac{-2x\frac{dx}{dt}}{&#10;6y\frac{dy}{dt}}&#10;\\\\\\&#10;\boxed{\cfrac{dy}{dt}=-\cfrac{x\frac{dx}{dt}}{3y}}\\\\&#10;-------------------------------

\bf \textit{now, when y = 1, what is \underline{x}?}\qquad x^2+3y^2=12\implies x^2+3(1)^2=12&#10;\\\\\\&#10;x^2=9\implies x=\sqrt{9}\implies x=3\\\\&#10;-------------------------------\\\\&#10;\begin{cases}&#10;y=1\\&#10;x=3\\&#10;\frac{dx}{dt}=2&#10;\end{cases}\implies \cfrac{dy}{dt}=-\cfrac{3\cdot 2}{3\cdot 1}\implies \cfrac{dy}{dt}=-2
7 0
3 years ago
Other questions:
  • Salaries for an large engineering company are normally distributed with a mean of $80,000 and a standard deviation of $8,450. An
    15·1 answer
  • Find the value of z.<br> O24<br> 50<br> 15
    14·2 answers
  • Describe the structure of an ionic crystal
    13·1 answer
  • Sony takes four breathes every 10 seconds during yoga at this rate about how many breaths Sony take on two minutes of yoga
    5·2 answers
  • Write 99/100 as a percentage?
    13·1 answer
  • Factorise (m+3)^2 - 16​
    8·1 answer
  • An automobile manufacturer is concerned about a fault in the braking mechanism of a particular model. The fault can, on rare occ
    5·1 answer
  • What's 2433857385+37474858​
    9·2 answers
  • If f(x) = -22 - 2x -1, then f(x+1) = -x? - 2x - 4?
    12·1 answer
  • 2 1 11 __ ft of fabric is needed to make pants, while 4 1 6 _ ft of fabric is required to make a rug. How much more fabric is ne
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!