Answer:
The second equation can be used
Step-by-step explanation:
Just plug in the values and the equation should look like this 8^2 + b^2 = 12^2
12 is the hypotenuse to plug that into c
and 8 is just a leg so you can either put it in a or b
Answer:
<u>Identities used:</u>
- <em>1/cosθ = secθ</em>
- <em>1/sinθ = cosecθ</em>
- <em>sinθ/cosθ = tanθ</em>
- <em>cosθ/sinθ = cotθ</em>
- <em>sin²θ + cos²θ = 1</em>
<h3>Question 1 </h3>
- (1 - sinθ)/(1 + sinθ) =
- (1 - sinθ)(1 - sinθ) / (1 - sinθ)(1 + sinθ) =
- (1 - sinθ)² / (1 - sin²θ) =
- (1 - sinθ)² / cos²θ
<u>Square root of it is:</u>
- (1 - sinθ)/ cosθ =
- 1/cosθ - sinθ / cosθ =
- secθ - tanθ
<h3>Question 2 </h3>
<u>The first part without root:</u>
- (1 + cosθ) / (1 - cosθ) =
- (1 + cosθ)(1 + cosθ) / (1 - cosθ)(1 + cosθ)
- (1 + cosθ)² / (1 - cos²θ) =
- (1 + cosθ)² / sin²θ
<u>Its square root is:</u>
- (1 + cosθ) / sinθ =
- 1/sinθ + cosθ/sinθ =
- cosecθ + cotθ
<u>The second part without root:</u>
- (1 - cosθ) / (1 + cosθ) =
- (1 - cosθ)²/ (1 + cosθ)(1 - cosθ) =
- (1 - cosθ)²/ (1 - cos²θ) =
- (1 - cosθ)²/sin²θ
<u>Its square root is:</u>
- (1 - cosθ) / sinθ =
- 1/sinθ - cosθ / sinθ =
- cosecθ - cotθ
<u>Sum of the results:</u>
- cosecθ + cotθ + cosecθ - cotθ =
- 2cosecθ
Answer:
ghtrh
Step-by-step explanation:
I think it’s the second one please correct me if I’m wrong not perfect at this
1) Surface Area = 2(lw + lh + wh)
2(4*5+4*9+5*9) =202in^2
Surface Area=202in^2
Lateral Area= Perimeter of base * height
5+5=10 <--width+width
4+4=8 <---length + length
10+8=18 <--total perimeter
18 * 9=162in^2 <--multiplied the height +perimeter of base
Lateral Area=162in^2
2) Same concept as the previous one
Surface Area = 2(lw + lh + wh)
2(4*2+4*5+5*2) =76in^2
Surface Area= 76in^2
Lateral Area
Lateral Area= Perimeter of base * height
4+4=8
2+2=4
8+4=12
12 x 5=60
Lateral Area= 60in^2