1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
patriot [66]
2 years ago
7

An icicle with a diameter of 15.5 centimeters at the top, tapers down in the shape of a cone with a length of

Mathematics
1 answer:
Helga [31]2 years ago
4 0

Answer:

Step-by-step explanation:

Note: I will leave the answers as fraction and in terms of pi unless the question states rounding conditions to ensure maximum precision.

From the question, we can tell it is a inversed-cone (upside down)

Volume of Cone = \pi r^{2} \frac{h}{3}

a) Given Diameter , d = 15.5cm and Length , h = 350cm,

we first find the radius.

r = \frac{d}{2} \\=\frac{15.5}{2} \\=7.75cm

We will now find the volume of the cone.

Volume of cone  \pi (7.75)^{2} \frac{350}{3} \\= \frac{168175\pi }{24}

We know the density of ice is 0.93 grams per 1cm^{3}

1cm^{3} =0.93g\\\frac{168175\pi }{24}  cm^{3} =0.93(\frac{168175\pi }{24} )\\= 20473 g(Nearest Gram)

b) After 1 hour, we know that the new radius = 7.75cm - 0.35cm = 7.4cm

and the new length, h = 350cm - 15cm = 335cm

Now we will find the volume of this newly-shaped cone.

Volume of cone = \pi (7.4)^{2} \frac{335}{3} \\= \frac{91723\pi }{15} cm^{3}

Volume of cone being melted = New Volume - Original volume

= \frac{168175\pi }{24} -\frac{91723\pi }{15} \\= \frac{35697\pi }{40} cm^{3}

c) Lets take the bucket as a round cylinder.

Given radius of bucket, r = 12.5cm (Half of Diameter) and h , height = 30cm.

Volume of cylinder = \pi r^{2} h\\=\pi (12.5)^{2} (30)\\=\frac{9375\pi }{2} cm^{3}

To overflow the bucket, the volume of ice melted must be more than the bucket volume.

Volume of ice melted after 5 hours = 5(\frac{35697\pi }{40} )\\=\frac{35697\pi }{8} cm^{3}

See, from here of course you are unable to tell whether the bucket will overflow as all are in fractions, but fret not, we can just find the difference.

Volume of bucket - Volume of ice melted after 5 hours

= \frac{9375\pi }{2} -\frac{35697\pi }{8 } \\=\frac{1803\pi }{8}cm^{3}

from we can see the bucket can still hold more melted ice even after 5 hours therefore it will not overflow.

You might be interested in
The curve
kherson [118]

Answer:

Point N(4, 1)

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right  

Equality Properties

  • Multiplication Property of Equality
  • Division Property of Equality
  • Addition Property of Equality
  • Subtraction Property of Equality<u> </u>

<u>Algebra I</u>

  • Coordinates (x, y)
  • Functions
  • Function Notation
  • Terms/Coefficients
  • Anything to the 0th power is 1
  • Exponential Rule [Rewrite]:                                                                              \displaystyle b^{-m} = \frac{1}{b^m}
  • Exponential Rule [Root Rewrite]:                                                                     \displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}

<u>Calculus</u>

Derivatives

Derivative Notation

Derivative of a constant is 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Derivative Rule [Chain Rule]:                                                                                    \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Step-by-step explanation:

<u>Step 1: Define</u>

<u />\displaystyle y = \sqrt{x - 3}<u />

<u />\displaystyle y' = \frac{1}{2}<u />

<u />

<u>Step 2: Differentiate</u>

  1. [Function] Rewrite [Exponential Rule - Root Rewrite]:                                   \displaystyle y = (x - 3)^{\frac{1}{2}}
  2. Chain Rule:                                                                                                        \displaystyle y' = \frac{d}{dx}[(x - 3)^{\frac{1}{2}}] \cdot \frac{d}{dx}[x - 3]
  3. Basic Power Rule:                                                                                             \displaystyle y' = \frac{1}{2}(x - 3)^{\frac{1}{2} - 1} \cdot (1 \cdot x^{1 - 1} - 0)
  4. Simplify:                                                                                                             \displaystyle y' = \frac{1}{2}(x - 3)^{-\frac{1}{2}} \cdot 1
  5. Multiply:                                                                                                             \displaystyle y' = \frac{1}{2}(x - 3)^{-\frac{1}{2}}
  6. [Derivative] Rewrite [Exponential Rule - Rewrite]:                                          \displaystyle y' = \frac{1}{2(x - 3)^{\frac{1}{2}}}
  7. [Derivative] Rewrite [Exponential Rule - Root Rewrite]:                                 \displaystyle y' = \frac{1}{2\sqrt{x - 3}}

<u>Step 3: Solve</u>

<em>Find coordinates</em>

<em />

<em>x-coordinate</em>

  1. Substitute in <em>y'</em> [Derivative]:                                                                             \displaystyle \frac{1}{2} = \frac{1}{2\sqrt{x - 3}}
  2. [Multiplication Property of Equality] Multiply 2 on both sides:                      \displaystyle 1 = \frac{1}{\sqrt{x - 3}}
  3. [Multiplication Property of Equality] Multiply √(x - 3) on both sides:            \displaystyle \sqrt{x - 3} = 1
  4. [Equality Property] Square both sides:                                                           \displaystyle x - 3 = 1
  5. [Addition Property of Equality] Add 3 on both sides:                                    \displaystyle x = 4

<em>y-coordinate</em>

  1. Substitute in <em>x</em> [Function]:                                                                                \displaystyle y = \sqrt{4 - 3}
  2. [√Radical] Subtract:                                                                                          \displaystyle y = \sqrt{1}
  3. [√Radical] Evaluate:                                                                                         \displaystyle y = 1

∴ Coordinates of Point N is (4, 1).

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Derivatives

Book: College Calculus 10e

4 0
3 years ago
Multiplying Polynomials:<br><br> (2t + 5)(3t - 6)
alex41 [277]

Answer:

6t2 + 3t − 30

7 0
3 years ago
Read 2 more answers
The pie chart represents the proportions of how Henry spent the £720 he took on holiday.
Oksana_A [137]

Answer:

£124

Step-by-step explanation:

first of all, you're meant to add all the figures given on the pie chart, which is 29+137+58+62+74 and that will give you a total of 360 degrees

so, you say 360 degrees is equal to the total amount of money he spent, which is £720, what about 62 degrees

therefore, you just do (62×720)÷360

that will give you £124

6 0
2 years ago
3 000 000 000+200 000 000+600 000+20 000+9
Leona [35]
3200620009 is the answer to your question
3 0
3 years ago
Read 2 more answers
Absolute zero, the coldest possible temperature is –273.2°C. Dry
lara [203]

Answer:

194.7

Step-by-step explanation:

273.2 -(-78.5) = 194.7

7 0
3 years ago
Other questions:
  • 12.5% commission on every car sold salesperson sold a car for $17,500 what is the commission earned from the sale round answer t
    12·1 answer
  • If I told you the circumference of a circle was 9 , what would the diameter be ?
    12·1 answer
  • Which values represent the first two terms of the sequence a1=2 and an=-4(an-1)^2?
    6·1 answer
  • Find the area of the figure to the nearest tenth, if necessary.
    9·2 answers
  • What is the maximum number of snowmen they can make?
    15·1 answer
  • Twelve people each have a standard deck of cards. Each person shuffles the deck and draws two cards (without replacement). Anyon
    10·1 answer
  • What is the slope of the line shown?
    8·2 answers
  • (-2) 3 = plz help me I need help I need help I need help I need help
    11·2 answers
  • What is the slope function y=8x+6
    9·1 answer
  • Heather earns $16
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!