Answer:
8. Domain: (-∞, -15) ∪ (-15, -5) ∪ (-5, ∞)
9. Domain: [7/13, ∞)
Range: [1, ∞)
Step-by-step explanation:
<u>Question 8</u>
Given rational function:

Factor the denominator of the given rational function:




Therefore:

<u>Asymptote</u>: a line that the curve gets infinitely close to, but never touches.
The function is <u>undefined</u> when the <u>denominator equals zero</u>:


Therefore, there are <u>vertical asymptotes</u> at x = -15 and x = -5.
<u>Domain</u>: set of all possible input values (x-values)
Therefore, the <u>domain of the given rational function</u> is:
(-∞, -15) ∪ (-15, -5) ∪ (-5, ∞)
---------------------------------------------------------------------------------
<u>Question 9</u>
Given function:

<u>Domain</u>: set of all possible input values (x-values)
As the <u>square root of a negative number</u> is <u>undefined</u>:



Therefore, the <u>domain of the given function</u> is:

<u>Range</u>: set of all possible output values (y-values)


Therefore, the <u>range of the given function</u> is:
[1, ∞)