Answer:
337.5m
Explanation:
<u>Kinematics</u>
Under constant acceleration, the kinematic equation holds:
, where "s" is the position at time "t", "a" is the constant acceleration, "
" is the initial velocity, and
is the initial position.
<u>Defining Displacement</u>
Displacement is the difference in positions:
or 



<u>Using known information</u>
Given that the initial velocity is zero ("skier stands at rest"), and zero times anything is zero, and zero plus anything remains unchanged, the equation simplifies further to the following:




So, to find the displacement after 15 seconds, with a constant acceleration of 3.0 m/s², substitute the known values, and simplify:

![\Delta s=\frac{1}{2}(3.0[\frac{m}{s^2}])(15.0[s])^2](https://tex.z-dn.net/?f=%5CDelta%20s%3D%5Cfrac%7B1%7D%7B2%7D%283.0%5B%5Cfrac%7Bm%7D%7Bs%5E2%7D%5D%29%2815.0%5Bs%5D%29%5E2)
![\Delta s=337.5[m]](https://tex.z-dn.net/?f=%5CDelta%20s%3D337.5%5Bm%5D)