Answer:
60N
Explanation:
in this case the minimum amount of force required must be equal to the friction Force. i.e <u>Newton</u><u>'s</u><u> </u><u>first</u><u> </u><u>law</u><u> of</u><u> </u><u>mot</u><u>ion</u><u>.</u>
therefore the maximum amount of frictional force is equal to the applied force which is 60N.
because of the net force acting on the object is zero the object is in constant motion . i.e equal and opposite force must be applied so that the object is in constant velocity therefore the total frictional force must be 60N
Answer:
answer the question i have asked go to my account
Explanation:
can i get brainliest
Answer:
D. are brought from the mantle to the surface in magma that hardens into komatiite.
Explanation:
Diamond :
It is the hardest form of carbon.The atomic atoms arrange in the cubic crystal structure and this is known as diamond cubic.Another form of the diamond at room temperature is graphite.This is used for making jewelry.This is also used in the cutting process because it has high strength.
Therefore the correct option for the diamond is D.
Answer: a) for 150 Angstroms 6.63 *10^-3 eV; b) for 5 Angstroms 6.02 eV
Explanation: To solve this problem we have to use the relationship given by De Broglie as:
λ =p/h where p is the momentum and h the Planck constant
if we consider the energy given by acceleration tube for the electrons given by: E: e ΔV so is equal to kinetic energy of electrons p^2/2m
Finally we have:
eΔV=p^2/2m= h^2/(2*m*λ^2)
replacing we obtained the above values.
In the part of the spectrum our eyes can detect (a spectrum is an arry of entities, as light waves or particles, ordered in accordance with the magnitudes of a common physical property, as wavelength or mass) Hope this helps you :D