1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kotegsom [21]
2 years ago
15

Please help, I have been trying for a while :(question on photo​

Mathematics
1 answer:
Zigmanuir [339]2 years ago
4 0

Answer:

\frac{x-22}{(x+2)(x-4)}

Step-by-step explanation:

multiply the numerator/denominator of the first fraction by (x - 4)

multiply the numerator/denominator of the second fraction by (x + 2)

this ensures that the fractions have a common denominator

\frac{4}{x+2} - \frac{3}{x-4}

= \frac{4(x-4)}{(x+2)(x-4)} - \frac{3(x+2)}{(x+2)(x-4)} ← subtract numerators leaving the common denominator

= \frac{4x-16-3x-6}{(x+2)(x-4)}

=\frac{x-22}{(x+2)(x-4)}

You might be interested in
4 Tan A/1-Tan^4=Tan2A + Sin2A​
Eva8 [605]

tan(2<em>A</em>) + sin(2<em>A</em>) = sin(2<em>A</em>)/cos(2<em>A</em>) + sin(2<em>A</em>)

• rewrite tan = sin/cos

… = 1/cos(2<em>A</em>) (sin(2<em>A</em>) + sin(2<em>A</em>) cos(2<em>A</em>))

• expand the functions of 2<em>A</em> using the double angle identities

… = 2/(2 cos²(<em>A</em>) - 1) (sin(<em>A</em>) cos(<em>A</em>) + sin(<em>A</em>) cos(<em>A</em>) (cos²(<em>A</em>) - sin²(<em>A</em>)))

• factor out sin(<em>A</em>) cos(<em>A</em>)

… = 2 sin(<em>A</em>) cos(<em>A</em>)/(2 cos²(<em>A</em>) - 1) (1 + cos²(<em>A</em>) - sin²(<em>A</em>))

• simplify the last factor using the Pythagorean identity, 1 - sin²(<em>A</em>) = cos²(<em>A</em>)

… = 2 sin(<em>A</em>) cos(<em>A</em>)/(2 cos²(<em>A</em>) - 1) (2 cos²(<em>A</em>))

• rearrange terms in the product

… = 2 sin(<em>A</em>) cos(<em>A</em>) (2 cos²(<em>A</em>))/(2 cos²(<em>A</em>) - 1)

• combine the factors of 2 in the numerator to get 4, and divide through the rightmost product by cos²(<em>A</em>)

… = 4 sin(<em>A</em>) cos(<em>A</em>) / (2 - 1/cos²(<em>A</em>))

• rewrite cos = 1/sec, i.e. sec = 1/cos

… = 4 sin(<em>A</em>) cos(<em>A</em>) / (2 - sec²(<em>A</em>))

• divide through again by cos²(<em>A</em>)

… = (4 sin(<em>A</em>)/cos(<em>A</em>)) / (2/cos²(<em>A</em>) - sec²(<em>A</em>)/cos²(<em>A</em>))

• rewrite sin/cos = tan and 1/cos = sec

… = 4 tan(<em>A</em>) / (2 sec²(<em>A</em>) - sec⁴(<em>A</em>))

• factor out sec²(<em>A</em>) in the denominator

… = 4 tan(<em>A</em>) / (sec²(<em>A</em>) (2 - sec²(<em>A</em>)))

• rewrite using the Pythagorean identity, sec²(<em>A</em>) = 1 + tan²(<em>A</em>)

… = 4 tan(<em>A</em>) / ((1 + tan²(<em>A</em>)) (2 - (1 + tan²(<em>A</em>))))

• simplify

… = 4 tan(<em>A</em>) / ((1 + tan²(<em>A</em>)) (1 - tan²(<em>A</em>)))

• condense the denominator as the difference of squares

… = 4 tan(<em>A</em>) / (1 - tan⁴(<em>A</em>))

(Note that some of these steps are optional or can be done simultaneously)

7 0
3 years ago
A graph is shown below:
Charra [1.4K]

Answer:

The correct answer is actually B. x - 3y < 5

Step-by-step explanation:

Because you must convert the equation to y-intercept form first.

Which makes it y = 1/3x - 1.6

So y = 1.6 and using the slope of 1/3x you can find that x = 5

3 0
3 years ago
Analyze Maude's work. Is she correct? If not, what was
Ilya [14]

Answer:

yes correct. hope helpful answer

6 0
3 years ago
Read 2 more answers
Please help will mark brainliest
Levart [38]

Answer:

14

Step-by-step explanation:

7 0
3 years ago
Read 2 more answers
351×5 estimate then record the product
Marysya12 [62]
2
351
x 5
-------
1,755

351 x 5 = 1,755
7 0
3 years ago
Read 2 more answers
Other questions:
  • the percentage of mothers who smoked cigars in 1990 was 15.1% and 11.5 in 2000 what year would be 10%
    7·1 answer
  • Evaluate 2^2⋅4^3=<br><br>Your answer<br><br><br>​
    15·1 answer
  • Amrita thinks of a number, she doubles it, adds 9, divides by three and then subtracts one.
    10·2 answers
  • Please helpp faster WiLL MARKED BRAINLIEST !!
    14·1 answer
  • Triangle A B C is shown. The length of A B is 16, the length of B C is 14, and the length of A C is 12.
    10·2 answers
  • Which best describes the data set below?
    15·1 answer
  • The diameter of a vollyball is 15.5 find its radius and volume.Please answer with full process​
    8·1 answer
  • About 0.5 of all the students in the fifth grade are girls. If the fifth grade has 80 ​students, how many of the students are gi
    9·1 answer
  • What is the side length of a square with a perimeter of 96 meters
    12·2 answers
  • Explain the parts of an angle
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!