Answer: apparent weighlessness.
Explanation:
1) Balance of forces on a person falling:
i) To answer this question we will deal with the assumption of non-drag force (abscence of air).
ii) When a person is dropped, and there is not air resistance, the only force acting on the person's body is the Earth's gravitational attraction (downward), which is the responsible for the gravitational acceleration (around 9.8 m/s²).
iii) Under that sceneraio, there is not normal force acting on the person (the normal force is the force that the floor or a chair exerts on a body to balance the gravitational force when the body is on it).
2) This is, the person does not feel a pressure upward, which is he/she does not feel the weight: freefalling is a situation of apparent weigthlessness.
3) True weightlessness is when the object is in a place where there exists not grativational acceleration: for example a point between two planes where the grativational forces are equal in magnitude but opposing in direction and so they cancel each other.
Therefore, you conclude that, assuming no air resistance, a person in this ride experiencing apparent weightlessness.
Answer:
Speed: Distance per time, 400 km/h, and a scalar quantity.
Velocity: Displacement per time, 20 m/s south, and a vector quantity.
Explanation:
Hope this helps! Please mark as brainliest.
Thanks!
It depends where you are.
-- If you weigh 120 pounds on the Moon,
then your mass is 329.1 kilograms.
-- If you weigh 120 pounds on Mars,
then your mass is 143.8 kilograms.
-- If you weigh 120 pounds on the Earth,
then your mass is 54.4 kilograms.
Answer:
If it had more or less mass, the atmosphere would be very different with either too much ammonia and methane or too little oxygen and water
Explanation:
We will hear the sound of siren of frequency 1553.4606 Hz.
<h3>What is Doppler Effect?</h3>
The apparent change in wave frequency brought on by the movement of a wave source is known as the Doppler effect. When the wave source is coming closer and when it is moving away, the perceived frequency changes. The Doppler effect explains why we hear a passing siren's sound changing in pitch.
according to Dopplers Effect,
![f'=[\frac{v + v_{0} }{v - v_{s} } ]f](https://tex.z-dn.net/?f=f%27%3D%5B%5Cfrac%7Bv%20%2B%20v_%7B0%7D%20%7D%7Bv%20-%20v_%7Bs%7D%20%7D%20%5Df)
![f'= [\frac{700+68.1}{700-94.8} ]* 1224](https://tex.z-dn.net/?f=f%27%3D%20%5B%5Cfrac%7B700%2B68.1%7D%7B700-94.8%7D%20%5D%2A%201224)

the frequency would be 1553.4606 Hz.
to learn more about Doppler Effect go to - brainly.com/question/9165991
#SPJ4