The length of the unknown sides of the triangles are as follows:
CD = 10√2
AC = 10√2
BC = 10
AB = 10
<h3>Triangle ACD</h3>
ΔACD is a right angle triangle. Therefore, Pythagoras theorem can be used to find the sides of the triangle.
where
c = hypotenuse side = AD = 20
a and b are the other 2 legs
lets use trigonometric ratio to find CD,
cos 45 = adjacent / hypotenuse
cos 45 = CD / 20
CD = 1 / √2 × 20
CD = 20 / √2 = 20√2 / 2 = 10√2
20² - (10√2)² = AC²
400 - 100(2) = AC²
AC² = 200
AC = √200 = 10√2
<h3>
Triangle ABC</h3>
ΔABC is a right angle triangle too. Therefore,
Using trigonometric ratio,
cos 45 = BC / 10√2
BC = 10√2 × cos 45
BC = 10√2 × 1 / √2
BC = 10√2 / √2 = 10
(10√2)² - 10² = AB²
200 - 100 = AB²
AB² = 100
AB = 10
learn more on triangles here: brainly.com/question/24304623?referrer=searchResults
I'm guessing that the >= is a greater than or equal to sign, so the answer should be d>=2 and d<2, please tell me if I am wrong and I will do my best to correct it!
Answer:
Difference of squares method is a method that is used to evaluate the difference between two perfect squares.
For example, given an algebraic expression in the form:
can be factored as follows:
From the given expressions, the only expression containing two perfect squares with the minus sign in the middle is the expression in option A.
i.e.
which can be factored as follows:
.
Just remember BODMAS, which B= brackets O= Order D= Division M= Multiply A=Addition and S=Subtract
So first you solve the brackets so 44+22 is 66
So 66-4+12 so 66-4 is 62
62+12 is 74
So now you have got 74 divided by 2 which is 37
Hope this helps xx
Step-by-step explanation:
The equation of a circle can be the expanded form of
\large \text{$(x-a)^2+(y-b)^2=r^2$}(x−a)
2
+(y−b)
2
=r
2
where rr is the radius of the circle, (a,\ b)(a, b) is the center of the circle, and (x,\ y)(x, y) is a point on the circle.
Here, the equation of the circle is,
\begin{gathered}\begin{aligned}&x^2+y^2+10x-4y-20&=&\ \ 0\\ \\ \Longrightarrow\ \ &x^2+y^2+10x-4y+25+4-49&=&\ \ 0\\ \\ \Longrightarrow\ \ &x^2+y^2+10x-4y+25+4&=&\ \ 49\\ \\ \Longrightarrow\ \ &x^2+10x+25+y^2-4y+4&=&\ \ 49\\ \\ \Longrightarrow\ \ &(x+5)^2+(y-2)^2&=&\ \ 7^2\end{aligned}\end{gathered}
⟹
⟹
⟹
⟹
x
2
+y
2
+10x−4y−20
x
2
+y
2
+10x−4y+25+4−49
x
2
+y
2
+10x−4y+25+4
x
2
+10x+25+y
2
−4y+4
(x+5)
2
+(y−2)
2
=
=
=
=
=
0
0
49
49
7
2
From this, we get two things:
\begin{gathered}\begin{aligned}1.&\ \ \textsf{Center of the circle is $(-5,\ 2)$.}\\ \\ 2.&\ \ \textsf{Radius of the circle is $\bold{7}$ units. }\end{aligned}\end{gathered}
1.
2.
Center of the circle is (−5, 2).
Radius of the circle is 7 units.
Hence the radius is 7 units.