The empirical formula of a compound found to have 55.7% hafnium and 44.3% chlorine is HfCl4.
<h3>How to calculate empirical formula?</h3>
The empirical formula of a compound is a notation indicating the ratios of the various elements present in a compound, without regard to the actual numbers.
The empirical formula of the given compound can be calculated as follows:
- Hafnium = 55.7% = 55.7g
- Chlorine = 44.3% = 44.3g
First, we convert mass values to moles by dividing by the molar mass of each element
- Hafnium = 55.7g ÷ 178.49g/mol = 0.312mol
- Chlorine = 44.3g ÷ 35.5g/mol = 1.25mol
Next, we divide each mole value by the smallest
- Hafnium = 0.312 ÷ 0.312 = 1
- Chlorine = 1.25 ÷ 0.312 = 4
Therefore, the empirical formula of a compound found to have 55.7% hafnium and 44.3% chlorine is HfCl4.
Learn more about empirical formula at: brainly.com/question/14044066
#SPJ1
I would say A. Friction because it is the act of two things rubbing together.
Ex. Trying to make fire
Answer:
Molar concentration is a measure of the concentration of a chemical species, in particular of a solute in a solution, in terms of amount of substance per unit volume of solution. In chemistry, the most commonly used unit for molarity is the number of moles per liter, having the unit symbol mol/L or mol/dm³ in SI unit.
We have to calculate the molar mass of AL(OH)₃
Atomic mass (Al)=27 amu
Atomic mass (O)=16 amu
Atomic mass (H)=1 amu
molecular weight= 27 amu+3(16 amu + 1 amu) =78 amu.
Therefore, the molar mass of Al (OH)₃ is 78 g/ mol
Now, we calculate the number of moles in 98.3 g of aluminum hydroxide.
78 g-------------------1 mol
98.3 g----------------- x
x=(98.3 g * 1 mol) / 78 g=1.26 moles.
Answer: 1.26 moles.
I think the answer is hmmm I think