Answer:
Step-by-step explanation:
50+70=120
180-120=60
I'm pretty sure the answer is 60
Answer:
10m x 15m
Step-by-step explanation:
You are given some information.
1. The area of the garden: A₁ = 150m²
2. The area of the path: A₂ = 186m²
3. The width of the path: 3m
If the garden has width w and length l, the area of the garden is:
(1) A₁ = l * w
The area of the path is given by:
(2) A₂ = 3l + 3l + 3w + 3w + 4*3*3 = 6l + 6w + 36
Multiplying (2) with l gives:
(3) A₂l = 6l² + 6lw + 36l
Replacing l*w in (3) with A₁ from (1):
(4) A₂l = 6l² + 6A₁ + 36l
Combining:
(5) 6l² + (36 - A₂)l +6A₁ = 0
Simplifying:
(6) l² - 25l + 150 = 0
This equation can be factored:
(7) (l - 10)*(l - 15) = 0
Solving for l we get 2 solutions:
l₁ = 10, l₂ = 15
Using (1) to find w:
w₁ = 15, w₂ = 10
The two solutions are equivalent. The garden has dimensions 10m and 15m.
Let,
f(x) = -2x+34
g(x) = (-x/3) - 10
h(x) = -|3x|
k(x) = (x-2)^2
This is a trial and error type of problem (aka "guess and check"). There are 24 combinations to try out for each problem, so it might take a while. It turns out that
g(h(k(f(15)))) = -6
f(k(g(h(8)))) = 2
So the order for part A should be: f, k, h, g
The order for part B should be: h, g, k f
note how I'm working from the right and moving left (working inside and moving out).
Here's proof of both claims
-----------------------------------------
Proof of Claim 1:
f(x) = -2x+34
f(15) = -2(15)+34
f(15) = 4
-----------------
k(x) = (x-2)^2
k(f(15)) = (f(15)-2)^2
k(f(15)) = (4-2)^2
k(f(15)) = 4
-----------------
h(x) = -|3x|
h(k(f(15))) = -|3*k(f(15))|
h(k(f(15))) = -|3*4|
h(k(f(15))) = -12
-----------------
g(x) = (-x/3) - 10
g(h(k(f(15))) ) = (-h(k(f(15))) /3) - 10
g(h(k(f(15))) ) = (-(-12) /3) - 10
g(h(k(f(15))) ) = -6
-----------------------------------------
Proof of Claim 2:
h(x) = -|3x|
h(8) = -|3*8|
h(8) = -24
---------------
g(x) = (-x/3) - 10
g(h(8)) = (-h(8)/3) - 10
g(h(8)) = (-(-24)/3) - 10
g(h(8)) = -2
---------------
k(x) = (x-2)^2
k(g(h(8))) = (g(h(8))-2)^2
k(g(h(8))) = (-2-2)^2
k(g(h(8))) = 16
---------------
f(x) = -2x+34
f(k(g(h(8))) ) = -2*(k(g(h(8))) )+34
f(k(g(h(8))) ) = -2*(16)+34
f(k(g(h(8))) ) = 2
Answer:
The speed of Usain Bolt is 0.194 miles per minutes to complete the marathon.
Step-by-step explanation:
Given as :
The Distance of marathon = 26.2 unit
The time taken to complete marathon = 2 hours and 15 minutes
= 120 + 15 = 135 minutes
Let The constant speed of Usain Bolt = S unit per minutes
So, Speed =
Or, S =
∴ S = 0.194 unit per minutes
Hence The speed of Usain Bolt is 0.194 miles per minutes to complete the marathon. Answer