Answer:
1.58×10E18
Explanation:
Since we have the reduction potentials we could make decisions regarding which one will be the anode or cathode. Evidently, bromine having the more positive reduction potential will be the cathode while the iodine will be the anode.
E°cell= 1.07- 0.53= 0.54 V
E°cell= 0.0592/n logK
0.54 = 0.0592/2 logK
logK= 0.54/0.0296
logK= 18.2
K= Antilog (18.2)
K= 1.58×10^18
Earth is the right distance from the sun. It’s protected from harmful solar radiation by its magnetic field and the atmosphere keeps it warm. Earth contains the right chemical ingredients to sustain life such as H2O (water) and C (carbon)
I believe you have to label out the positive metal ion and the delocalized electrons. They're the 2 things that makes up a metal structure.
In the diagram, the circles with the + symbol are the positive metal ions, since + represents positive. And the remaining - circles are the delocalized electrons, as electrons are negative.
And for how a metal conducts electricity, since they're delocalized mobile electrons present in any metal structures, they're able to move away from the metal to the positive side of the battery and more electrons can replace their place flowing from the negative side.
A balanced equation is a prime example of the law of the conservation of mass as the number of atoms in the reactants is consistent with the number of atoms in the reactants meaning the amount of matter has not changed and no mass has been created or destroyed hence obeying the law.
Answer:
Rubidium-85=61.2
Rubidium-87=24.36
Atomic Mass=85.56 amu
Explanation:
To find the atomic mass, we must multiply the masses of the isotope by the percent abundance, then add.
<u>Rubidium-85 </u>
This isotope has an abundance of 72%.
Convert 72% to a decimal. Divide by 100 or move the decimal two places to the left.
- 72/100= 0.72 or 72.0 --> 7.2 ---> 0.72
Multiply the mass of the isotope, which is 85, by the abundance as a decimal.
- mass * decimal abundance= 85* 0.72= 61.2
Rubidium-85=61.2
<u>Rubidium-87</u>
This isotope has an abundance of 28%.
Convert 28% to a decimal. Divide by 100 or move the decimal two places to the left.
- 28/100= 0.28 or 28.0 --> 2.8 ---> 0.28
Multiply the mass of the isotope, which is 87, by the abundance as a decimal.
- mass * decimal abundance= 87* 0.28= 24.36
Rubidium-87=24.36
<u>Atomic Mass of Rubidium:</u>
Add the two numbers together.
- Rb-85 (61.2) and Rb-87 (24.36)