Answer:
0.249579
Step-by-step explanation:
P(rain) = 0.3
P(no rain) = 1 - 0.3 = 0.7
The event of rain falling a second time within the next 5 days is possible in these ways
1. Rain on days 1 and 2
2. Rain on days 1 and 3; none on day 2
3. Rain on days 1 and 4; none on days 2 and 3
4. Rain on days 1 and 5; none on days 2, 3 and 4
5. Rain on days 1 and 6; none on day 2, 3, 4 and 5

g(x) = (1/4)x^2 . correct option C) .
<u>Step-by-step explanation:</u>
Here we have ,
and we need to find g(x) from the graph . Let's find out:
We have ,
. From the graph we can see that g(x) is passing through point (2,1 ) . Let's substitute this point in all of the four options !
A . g(x) = (1/4x)^2
Putting (2,1) in equation g(x) = (x/4)^2 , we get :
⇒ 
⇒ 
Hence , wrong equation !
B . g(x) = 4x^2
Putting (2,1) in equation g(x) = 4x^2 , we get :
⇒ 
⇒ 
Hence , wrong equation !
C . g(x) = (1/4)x^2
Putting (2,1) in equation g(x) = (1/4)x^2 , we get :
⇒ 
⇒ 
Hence , right equation !
D . g(x) = (1/2)x^2
Putting (2,1) in equation g(x) = (1/2)x^2 , we get :
⇒ 
⇒ 
Hence , wrong equation !
Therefore , g(x) = (1/4)x^2 . correct option C) .
Is the same as the one you just did.
keep in mind that, going against the current, the current's speed erodes speed from your regular speed, whilst if you're going with the current, the current's speed adds to it.
now, in this case, you row 5mph, going upstream you're only doing 3mph, whatever happened to the other 2mph? well, the current speed eroded them, meaning the speed of the river is 2mph.
now, going downstream with the current, your regular speed is 5mph, and the current is 2mph, since the current adds to yours, then you're going 5 + 2, mph.
Answer:
y=2/5x+24/5
Step-by-step explanation:
mark me brainliest?