The rate of change is +2 or 2 over 1 or 2/1
Answer:
5
Step-by-step explanation:
The rate of change is the slope
y = 5x
The slope is the constant in front of the x
The constant rate of change is 5
To find what the number is, we need to set up proportional fractions.
Currently, we have 8% of a number is 20.
To set up our fractions, put 100% under 8% as a fraction first.
It should look like this: 8/100 (hint: per-cent means per-hundred).
Now, we have 20 out of a number, x. This is because we are claiming that 20 is 8% of a number (if we just reword the question without changing the concept).
It should look like this: 20/x.
Our proportional fractions are:
20/x = 8/100.
To solve for this, we need to cross-multiply the denominator of 8/100 (bottom number, 100) with the numerator of 20/x (top number, 20).
This product equation should look like this:
20 x 100 (when simplified, we get 2000).
Now, we need to cross multiply the numerator of 8/100 (top number, 8) with the denominator of 20/x (bottom number, x).
This product equation should look like this:
8x.
Now that we've cross-multiplied, set our two products as an equation.
8x = 2000.
To solve for x, divide both sides by 8 (remember, what you do to one side of an equation, you must do it to the other).
8x / 8 = x
2000 / 8 = 250.
x = 250
Your final answer is:
8% of 250 is 20.
I hope this helps!
The key features of a quadratic graph that can identified are; x and y intercepts, axis of symmetry and vertex
<h3>Keys features of a quadratic graph</h3>
The key features are the x-intercepts, y-intercepts, axis of symmetry, and the vertex.
If we add units we can move this function upwards, downwards leftwards and rightwards.
- If we add a positive number to the x-variable, then the graph will move to the left.
- If we add a negative number to the x-variable, then the graph will move to the right.
- If we add a positive number to y-variable, then the graph will move upwards.
- If we add a negative number to y-variable, then the graph will move downwards.
Hence, if we compare the rules we use before with linear function, there's no distinction between horizontal and vertical movements, because if we add to x-variable, then y-variable will be also affected.
Learn more about quadratic graphs here:
brainly.com/question/1214333
#SPJ1