to get the equation of any straight line all we need is two points, well, let's just grab them from the table.
hmmm let's use (-49 , -39) and hmmm say (67 , 77)


Answer:
The number is 5
Step-by-step explanation:
Let x represent the number
Now let's break it down!
Sum of a number and 3 gives;
x + 3
This is then doubled to give;
2* (x + 3)
This is added to the product of 6 and the original number to give 46
Product of 6 and the original number = 6 * x
Now 2* (x + 3) is added to 6 * x to give 46
2* (x + 3) + 6*x = 46
2x + 6 + 6x = 46
8x + 6 = 46
Subtract 6 from both sides
8x + 6 - 6 = 46 - 6
8x = 40
x = 40/8
x = 5
Hence, the number is 5
Answer:
For 3x^2+4x+4=0
Discriminant= = -32
The solutions are
(-b+√x)/2a= (-2+2√-2)/3
(-b-√x)/2a= (-2-2√-2)/3
For 3x^2+2x+4=0
Discriminant= -44
The solutions
(-b+√x)/2a= (-1+√-11)/3
(-b-√x)/2a= (-1-√-11)/3
For 9x^2-6x+2=0
Discriminant= -36
The solutions
(-b+√x)/2a= (1+√-1)/3
(-b-√x)/2a= (1-√-1)/3
Step-by-step explanation:
Formula for the discriminant = b²-4ac
let the discriminant be = x for the equations
The solution of the equations
= (-b+√x)/2a and = (-b-√x)/2a
For 3x^2+4x+4=0
Discriminant= 4²-4(3)(4)
Discriminant= 16-48
Discriminant= = -32
The solutions
(-b+√x)/2a =( -4+√-32)/6
(-b+√x)/2a= (-4 +4√-2)/6
(-b+√x)/2a= (-2+2√-2)/3
(-b-√x)/2a =( -4-√-32)/6
(-b-√x)/2a= (-4 -4√-2)/6
(-b-√x)/2a= (-2-2√-2)/3
For 3x^2+2x+4=0
Discriminant= 2²-4(3)(4)
Discriminant= 4-48
Discriminant= -44
The solutions
(-b+√x)/2a =( -2+√-44)/6
(-b+√x)/2a= (-2 +2√-11)/6
(-b+√x)/2a= (-1+√-11)/3
(-b-√x)/2a =( -2-√-44)/6
(-b-√x)/2a= (-2 -2√-11)/6
(-b-√x)/2a= (-1-√-11)/3
For 9x^2-6x+2=0
Discriminant= (-6)²-4(9)(2)
Discriminant= 36 -72
Discriminant= -36
The solutions
(-b+√x)/2a =( 6+√-36)/18
(-b+√x)/2a= (6 +6√-1)/18
(-b+√x)/2a= (1+√-1)/3
(-b-√x)/2a =( 6-√-36)/18
(-b-√x)/2a= (6 -6√-1)/18
(-b-√x)/2a= (1-√-1)/3
The correct answer Is D. Purple , Green , Yellow
Hope I helped! ( Smiles )
Answer:
I believe it would be A bc
Step-by-step explanation:
A= 42
B= 32
C= 20
D= 36